Matches in SemOpenAlex for { <https://semopenalex.org/work/W2527725345> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2527725345 abstract "Diagnostic cognitive assessment (DCA) was explored using Bayesian networks and evidence-centred design (ECD) in a statistics learning domain (ANOVA). The assessment environment simulates problem solving activities that occurred in a web-based statistics learning environment. The assessment model is composed of assessment constructs, and evidence models. Assessment constructs correspond to components of knowledge and procedural skill in a cognitive domain model and are represented as explanatory variables in the assessment model. Explanatory variables represent specific aspects of student's performance of assessment problems. Bayesian networks are used to connect the explanatory variables to the evidence variables. These links enable the network to propagate evidential information to explanatory model variables in the assessment model. The purpose of DCA is to infer cognitive components of knowledge and skill that have been mastered by a student. These inferences are realized probabilistically using the Bayesian network to estimate the likelihood that a student has mastered specific components of knowledge or skill based on observations of features of the student's performance of an assessment task.The objective of this study was to develop a Bayesian assessment model that implements DCA in a specific domain of statistics, and evaluate it in relation to its potential to achieve the objectives of DCA. This study applied a method for model development to the ANOVA score model domain to attain the objectives of the study. The results documented: (a) the process of model development in a specific domain; (b) the properties of the Bayesian assessment model; (c) the performance of the network in tracing students' towards mastery by using the model to successfully update the posterior probabilities; (d) the use of estimates of log odds ratios of likelihood of mastery as a measure of progress toward mastery; (e) the robustness of diagnostic inferences based on the network; and (f) the use of the Bayesian assessment model for diagnostic assessment with a sample of 20 students who completed the assessment tasks. The results indicated that the Bayesian assessment network provided valid diagnostic information about specific cognitive components, and was able to track development towards achieving mastery of learning goals." @default.
- W2527725345 created "2016-10-14" @default.
- W2527725345 creator A5035608960 @default.
- W2527725345 date "2007-01-01" @default.
- W2527725345 modified "2023-09-23" @default.
- W2527725345 title "Cognitive assessment in a computer-based coaching environment in higher education: diagnostic assessment of development of knowledge and problem-solving skill in statistics" @default.
- W2527725345 hasPublicationYear "2007" @default.
- W2527725345 type Work @default.
- W2527725345 sameAs 2527725345 @default.
- W2527725345 citedByCount "2" @default.
- W2527725345 crossrefType "journal-article" @default.
- W2527725345 hasAuthorship W2527725345A5035608960 @default.
- W2527725345 hasConcept C101112237 @default.
- W2527725345 hasConcept C107673813 @default.
- W2527725345 hasConcept C111919701 @default.
- W2527725345 hasConcept C119857082 @default.
- W2527725345 hasConcept C134306372 @default.
- W2527725345 hasConcept C154945302 @default.
- W2527725345 hasConcept C160234255 @default.
- W2527725345 hasConcept C207685749 @default.
- W2527725345 hasConcept C33724603 @default.
- W2527725345 hasConcept C33923547 @default.
- W2527725345 hasConcept C36503486 @default.
- W2527725345 hasConcept C41008148 @default.
- W2527725345 hasConcept C98045186 @default.
- W2527725345 hasConceptScore W2527725345C101112237 @default.
- W2527725345 hasConceptScore W2527725345C107673813 @default.
- W2527725345 hasConceptScore W2527725345C111919701 @default.
- W2527725345 hasConceptScore W2527725345C119857082 @default.
- W2527725345 hasConceptScore W2527725345C134306372 @default.
- W2527725345 hasConceptScore W2527725345C154945302 @default.
- W2527725345 hasConceptScore W2527725345C160234255 @default.
- W2527725345 hasConceptScore W2527725345C207685749 @default.
- W2527725345 hasConceptScore W2527725345C33724603 @default.
- W2527725345 hasConceptScore W2527725345C33923547 @default.
- W2527725345 hasConceptScore W2527725345C36503486 @default.
- W2527725345 hasConceptScore W2527725345C41008148 @default.
- W2527725345 hasConceptScore W2527725345C98045186 @default.
- W2527725345 hasLocation W25277253451 @default.
- W2527725345 hasOpenAccess W2527725345 @default.
- W2527725345 hasPrimaryLocation W25277253451 @default.
- W2527725345 hasRelatedWork W183982877 @default.
- W2527725345 hasRelatedWork W185989546 @default.
- W2527725345 hasRelatedWork W1968083087 @default.
- W2527725345 hasRelatedWork W2080216192 @default.
- W2527725345 hasRelatedWork W2095642485 @default.
- W2527725345 hasRelatedWork W2183945923 @default.
- W2527725345 hasRelatedWork W2281688277 @default.
- W2527725345 hasRelatedWork W2391632123 @default.
- W2527725345 hasRelatedWork W2397847455 @default.
- W2527725345 hasRelatedWork W2595623143 @default.
- W2527725345 hasRelatedWork W2612066945 @default.
- W2527725345 hasRelatedWork W2743348823 @default.
- W2527725345 hasRelatedWork W2750758140 @default.
- W2527725345 hasRelatedWork W2787760162 @default.
- W2527725345 hasRelatedWork W2886063954 @default.
- W2527725345 hasRelatedWork W2954276751 @default.
- W2527725345 hasRelatedWork W3011988825 @default.
- W2527725345 hasRelatedWork W3017775569 @default.
- W2527725345 hasRelatedWork W3135872926 @default.
- W2527725345 hasRelatedWork W2959566351 @default.
- W2527725345 isParatext "false" @default.
- W2527725345 isRetracted "false" @default.
- W2527725345 magId "2527725345" @default.
- W2527725345 workType "article" @default.