Matches in SemOpenAlex for { <https://semopenalex.org/work/W2528018181> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2528018181 abstract "This thesis contains a series of studies about 2-adic integral Galois representations unramified outside a finite set of primes. There are two main focuses of research: the study of 2-adic integral Galois representations and the study on how to compare two 2-adic integral Galois representations.Firstly, when studying a we develop methods to determine whether the residual image is reducible or irreducible: in the irreducible case the residual image is completely determined. On the other hand, when the residual image is reducible we are able to make a choice of a stable lattice to completely determine the residual image. Lastly, from the choice of lattice, we are able to extend our methods to determine whether the representation is trivial modulo 2k+1 assuming that is trivial modulo 2k.Secondly, when comparing two 2-adic integral Galois representations, we are able to determine whether the representations are isogenous that is, after conjugation if necessary, their residual representations are the same. In some cases, this process follows the approach given in [11] by Ron Livne.Finally, the idea behind these studies was the notion of what we call a Black Box representation, i.e., a system that will provide the characteristic polynomial of the representation for any prime not in the set of primes." @default.
- W2528018181 created "2016-10-14" @default.
- W2528018181 creator A5051457837 @default.
- W2528018181 date "2016-06-01" @default.
- W2528018181 modified "2023-09-24" @default.
- W2528018181 title "Computational aspects of Galois representations" @default.
- W2528018181 hasPublicationYear "2016" @default.
- W2528018181 type Work @default.
- W2528018181 sameAs 2528018181 @default.
- W2528018181 citedByCount "1" @default.
- W2528018181 countsByYear W25280181812018 @default.
- W2528018181 crossrefType "dissertation" @default.
- W2528018181 hasAuthorship W2528018181A5051457837 @default.
- W2528018181 hasConcept C11413529 @default.
- W2528018181 hasConcept C114614502 @default.
- W2528018181 hasConcept C118615104 @default.
- W2528018181 hasConcept C121332964 @default.
- W2528018181 hasConcept C136119220 @default.
- W2528018181 hasConcept C145899342 @default.
- W2528018181 hasConcept C155512373 @default.
- W2528018181 hasConcept C184992742 @default.
- W2528018181 hasConcept C202444582 @default.
- W2528018181 hasConcept C24890656 @default.
- W2528018181 hasConcept C2781204021 @default.
- W2528018181 hasConcept C33923547 @default.
- W2528018181 hasConcept C35435516 @default.
- W2528018181 hasConcept C54732982 @default.
- W2528018181 hasConcept C67536143 @default.
- W2528018181 hasConceptScore W2528018181C11413529 @default.
- W2528018181 hasConceptScore W2528018181C114614502 @default.
- W2528018181 hasConceptScore W2528018181C118615104 @default.
- W2528018181 hasConceptScore W2528018181C121332964 @default.
- W2528018181 hasConceptScore W2528018181C136119220 @default.
- W2528018181 hasConceptScore W2528018181C145899342 @default.
- W2528018181 hasConceptScore W2528018181C155512373 @default.
- W2528018181 hasConceptScore W2528018181C184992742 @default.
- W2528018181 hasConceptScore W2528018181C202444582 @default.
- W2528018181 hasConceptScore W2528018181C24890656 @default.
- W2528018181 hasConceptScore W2528018181C2781204021 @default.
- W2528018181 hasConceptScore W2528018181C33923547 @default.
- W2528018181 hasConceptScore W2528018181C35435516 @default.
- W2528018181 hasConceptScore W2528018181C54732982 @default.
- W2528018181 hasConceptScore W2528018181C67536143 @default.
- W2528018181 hasLocation W25280181811 @default.
- W2528018181 hasOpenAccess W2528018181 @default.
- W2528018181 hasPrimaryLocation W25280181811 @default.
- W2528018181 hasRelatedWork W1663281444 @default.
- W2528018181 hasRelatedWork W1979080577 @default.
- W2528018181 hasRelatedWork W2061653198 @default.
- W2528018181 hasRelatedWork W2068302501 @default.
- W2528018181 hasRelatedWork W2076223733 @default.
- W2528018181 hasRelatedWork W2150208796 @default.
- W2528018181 hasRelatedWork W2163197888 @default.
- W2528018181 hasRelatedWork W2199270623 @default.
- W2528018181 hasRelatedWork W2271948634 @default.
- W2528018181 hasRelatedWork W2323500172 @default.
- W2528018181 hasRelatedWork W2328435434 @default.
- W2528018181 hasRelatedWork W2783626036 @default.
- W2528018181 hasRelatedWork W2791949520 @default.
- W2528018181 hasRelatedWork W2802267356 @default.
- W2528018181 hasRelatedWork W2951670728 @default.
- W2528018181 hasRelatedWork W2963593868 @default.
- W2528018181 hasRelatedWork W3164087027 @default.
- W2528018181 hasRelatedWork W329521108 @default.
- W2528018181 hasRelatedWork W17137213 @default.
- W2528018181 hasRelatedWork W2118589784 @default.
- W2528018181 isParatext "false" @default.
- W2528018181 isRetracted "false" @default.
- W2528018181 magId "2528018181" @default.
- W2528018181 workType "dissertation" @default.