Matches in SemOpenAlex for { <https://semopenalex.org/work/W2528164082> ?p ?o ?g. }
- W2528164082 endingPage "633" @default.
- W2528164082 startingPage "622" @default.
- W2528164082 abstract "Most attempts of deterministic eruption forecasting are based on the material Failure Forecast Method (FFM). This method assumes that a precursory observable, such as the rate of seismic activity, can be described by a simple power law which presents a singularity at a time close to the eruption onset. Until now, this method has been applied only in a small number of cases, generally for forecasts in hindsight. In this paper, a rigorous Bayesian approach of the FFM designed for real-time applications is applied. Using an automatic recognition system, seismo-volcanic events are detected and classified according to their physical mechanism and time series of probability distributions of the rates of events are calculated. At each time of observation, a Bayesian inversion provides estimations of the exponent of the power law and of the time of eruption, together with their probability density functions. Two criteria are defined in order to evaluate the quality and reliability of the forecasts. Our automated procedure has allowed the analysis of long, continuous seismic time series: 13 years from Volcán de Colima, Mexico, 10 years from Piton de la Fournaise, Reunion Island, France, and several months from Merapi volcano, Java, Indonesia. The new forecasting approach has been applied to 64 pre-eruptive sequences which present various types of dominant seismic activity (volcano-tectonic or long-period events) and patterns of seismicity with different level of complexity. This has allowed us to test the FFM assumptions, to determine in which conditions the method can be applied, and to quantify the success rate of the forecasts. 62% of the precursory sequences analysed are suitable for the application of FFM and half of the total number of eruptions are successfully forecast in hindsight. In real-time, the method allows for the successful forecast of 36% of all the eruptions considered. Nevertheless, real-time forecasts are successful for 83% of the cases that fulfil the reliability criteria. Therefore, good confidence on the method is obtained when the reliability criteria are met." @default.
- W2528164082 created "2016-10-14" @default.
- W2528164082 creator A5020354210 @default.
- W2528164082 creator A5032682213 @default.
- W2528164082 creator A5050494448 @default.
- W2528164082 creator A5051935667 @default.
- W2528164082 creator A5069651455 @default.
- W2528164082 creator A5083345126 @default.
- W2528164082 creator A5091750766 @default.
- W2528164082 date "2016-11-01" @default.
- W2528164082 modified "2023-10-16" @default.
- W2528164082 title "Performance of the ‘material Failure Forecast Method’ in real-time situations: A Bayesian approach applied on effusive and explosive eruptions" @default.
- W2528164082 cites W1676071489 @default.
- W2528164082 cites W1963546387 @default.
- W2528164082 cites W1966606988 @default.
- W2528164082 cites W1970776328 @default.
- W2528164082 cites W1992124464 @default.
- W2528164082 cites W1993485445 @default.
- W2528164082 cites W1994789527 @default.
- W2528164082 cites W1995875735 @default.
- W2528164082 cites W2001144707 @default.
- W2528164082 cites W2001361034 @default.
- W2528164082 cites W2005360984 @default.
- W2528164082 cites W2007186363 @default.
- W2528164082 cites W2007824499 @default.
- W2528164082 cites W2013654143 @default.
- W2528164082 cites W2015140881 @default.
- W2528164082 cites W2018078975 @default.
- W2528164082 cites W2020969778 @default.
- W2528164082 cites W2024755134 @default.
- W2528164082 cites W2033008723 @default.
- W2528164082 cites W2035703708 @default.
- W2528164082 cites W2039147041 @default.
- W2528164082 cites W2039449702 @default.
- W2528164082 cites W2054862796 @default.
- W2528164082 cites W2055391228 @default.
- W2528164082 cites W2055752909 @default.
- W2528164082 cites W2060871902 @default.
- W2528164082 cites W2079959006 @default.
- W2528164082 cites W2084627469 @default.
- W2528164082 cites W2089928476 @default.
- W2528164082 cites W2093302550 @default.
- W2528164082 cites W2098614139 @default.
- W2528164082 cites W2099243357 @default.
- W2528164082 cites W2099680819 @default.
- W2528164082 cites W2103902840 @default.
- W2528164082 cites W2108827297 @default.
- W2528164082 cites W2130025277 @default.
- W2528164082 cites W2133072335 @default.
- W2528164082 cites W2144847507 @default.
- W2528164082 cites W2145791074 @default.
- W2528164082 cites W2151909003 @default.
- W2528164082 cites W2155913568 @default.
- W2528164082 cites W2159194034 @default.
- W2528164082 cites W2160260207 @default.
- W2528164082 cites W2167329658 @default.
- W2528164082 cites W2170599194 @default.
- W2528164082 cites W2335059323 @default.
- W2528164082 cites W2341514515 @default.
- W2528164082 doi "https://doi.org/10.1016/j.jvolgeores.2016.10.002" @default.
- W2528164082 hasPublicationYear "2016" @default.
- W2528164082 type Work @default.
- W2528164082 sameAs 2528164082 @default.
- W2528164082 citedByCount "23" @default.
- W2528164082 countsByYear W25281640822018 @default.
- W2528164082 countsByYear W25281640822019 @default.
- W2528164082 countsByYear W25281640822020 @default.
- W2528164082 countsByYear W25281640822021 @default.
- W2528164082 countsByYear W25281640822022 @default.
- W2528164082 countsByYear W25281640822023 @default.
- W2528164082 crossrefType "journal-article" @default.
- W2528164082 hasAuthorship W2528164082A5020354210 @default.
- W2528164082 hasAuthorship W2528164082A5032682213 @default.
- W2528164082 hasAuthorship W2528164082A5050494448 @default.
- W2528164082 hasAuthorship W2528164082A5051935667 @default.
- W2528164082 hasAuthorship W2528164082A5069651455 @default.
- W2528164082 hasAuthorship W2528164082A5083345126 @default.
- W2528164082 hasAuthorship W2528164082A5091750766 @default.
- W2528164082 hasBestOaLocation W25281640822 @default.
- W2528164082 hasConcept C105795698 @default.
- W2528164082 hasConcept C107673813 @default.
- W2528164082 hasConcept C120806208 @default.
- W2528164082 hasConcept C127313418 @default.
- W2528164082 hasConcept C165205528 @default.
- W2528164082 hasConcept C33923547 @default.
- W2528164082 hasConcept C83176761 @default.
- W2528164082 hasConceptScore W2528164082C105795698 @default.
- W2528164082 hasConceptScore W2528164082C107673813 @default.
- W2528164082 hasConceptScore W2528164082C120806208 @default.
- W2528164082 hasConceptScore W2528164082C127313418 @default.
- W2528164082 hasConceptScore W2528164082C165205528 @default.
- W2528164082 hasConceptScore W2528164082C33923547 @default.
- W2528164082 hasConceptScore W2528164082C83176761 @default.
- W2528164082 hasFunder F4320320883 @default.
- W2528164082 hasLocation W25281640821 @default.
- W2528164082 hasLocation W25281640822 @default.
- W2528164082 hasLocation W25281640823 @default.
- W2528164082 hasLocation W25281640824 @default.