Matches in SemOpenAlex for { <https://semopenalex.org/work/W2528178481> ?p ?o ?g. }
- W2528178481 endingPage "3110" @default.
- W2528178481 startingPage "3098" @default.
- W2528178481 abstract "ABSTRACT Available climate data for south east Australia is reliant upon elevational lapse rates, which do not account for mesoscale processes that can affect temperatures, such as cold air drainage. Additional predictor variables are available for generating new climate datasets such as topographic indices and Moderate Resolution Imaging Spectroradiometer land surface temperature ( MODIS LST ); however, these have not been thoroughly tested to date. In this study, the relative benefits of including a localized topographic index and standardized MODIS LST values for temperature interpolation were assessed using partial bivariate splines, full and partial trivariate splines, and regression kriging. Trivariate splines provided the best interpolation performance in most cases; however, the partial bivariate spline with a fixed dependence upon elevation performed marginally better than the full trivariate spline for minimum temperature. The local topographic index improved the RMSE of minimum temperature climate normals by 17% in comparison to the best performing elevation only model. A further improvement for minimum temperature performance was achieved by including standardized night time MODIS LST values as covariates (34–39% reduction in RMSE ). Standardized day time MODIS LST values improved maximum temperature interpolation performance; however, the improvement was only marginal in comparison to the full trivariate spline (6% reduction in RMSE ). Cross validation of daily maximum and minimum temperature anomalies reflected performance trends shown in the climate normal analysis. Results suggest that the use of alternative approaches to interpolating temperature data may have significant implications for the calculation of bioclimatic variables and provide new opportunities to study extremes at high spatial and temporal resolutions using existing weather station networks. Furthermore, improving minimum temperature surfaces by accounting for temperature inversions driven by cold air drainage regimes may improve our ability to incorporate mesoscale temperature variability into a variety of applications, such as deriving temperature dependent climatic variables, species distribution modelling and assessments of fire risk." @default.
- W2528178481 created "2016-10-14" @default.
- W2528178481 creator A5022043303 @default.
- W2528178481 creator A5079722503 @default.
- W2528178481 date "2016-10-07" @default.
- W2528178481 modified "2023-10-18" @default.
- W2528178481 title "Improving temperature interpolation using <scp>MODIS LST</scp> and local topography: a comparison of methods in south east Australia" @default.
- W2528178481 cites W123187479 @default.
- W2528178481 cites W143172470 @default.
- W2528178481 cites W1510835618 @default.
- W2528178481 cites W1549716303 @default.
- W2528178481 cites W1588952777 @default.
- W2528178481 cites W164008156 @default.
- W2528178481 cites W174598607 @default.
- W2528178481 cites W1837822620 @default.
- W2528178481 cites W1968572151 @default.
- W2528178481 cites W1970969255 @default.
- W2528178481 cites W1978860951 @default.
- W2528178481 cites W1983934822 @default.
- W2528178481 cites W1985949400 @default.
- W2528178481 cites W1993971295 @default.
- W2528178481 cites W1996772792 @default.
- W2528178481 cites W1999107174 @default.
- W2528178481 cites W1999907997 @default.
- W2528178481 cites W2007873570 @default.
- W2528178481 cites W2016670837 @default.
- W2528178481 cites W2034062821 @default.
- W2528178481 cites W2036005841 @default.
- W2528178481 cites W2037501364 @default.
- W2528178481 cites W2038635608 @default.
- W2528178481 cites W2040316938 @default.
- W2528178481 cites W2045997296 @default.
- W2528178481 cites W2048335302 @default.
- W2528178481 cites W2052692697 @default.
- W2528178481 cites W2053683629 @default.
- W2528178481 cites W2056223663 @default.
- W2528178481 cites W2057433825 @default.
- W2528178481 cites W2058998445 @default.
- W2528178481 cites W2068996103 @default.
- W2528178481 cites W2076358440 @default.
- W2528178481 cites W2093275097 @default.
- W2528178481 cites W2094973654 @default.
- W2528178481 cites W2096210555 @default.
- W2528178481 cites W2102717583 @default.
- W2528178481 cites W2102994598 @default.
- W2528178481 cites W2109285568 @default.
- W2528178481 cites W2111489142 @default.
- W2528178481 cites W2112776483 @default.
- W2528178481 cites W2117779820 @default.
- W2528178481 cites W2141006953 @default.
- W2528178481 cites W2141405323 @default.
- W2528178481 cites W2142605527 @default.
- W2528178481 cites W2144064225 @default.
- W2528178481 cites W2145345918 @default.
- W2528178481 cites W2162168586 @default.
- W2528178481 cites W2170816806 @default.
- W2528178481 cites W2174485043 @default.
- W2528178481 cites W2179545855 @default.
- W2528178481 cites W2209210434 @default.
- W2528178481 cites W2492397174 @default.
- W2528178481 cites W2496675188 @default.
- W2528178481 cites W2509102061 @default.
- W2528178481 cites W2590779313 @default.
- W2528178481 cites W3000332379 @default.
- W2528178481 cites W4298876635 @default.
- W2528178481 doi "https://doi.org/10.1002/joc.4902" @default.
- W2528178481 hasPublicationYear "2016" @default.
- W2528178481 type Work @default.
- W2528178481 sameAs 2528178481 @default.
- W2528178481 citedByCount "33" @default.
- W2528178481 countsByYear W25281784812017 @default.
- W2528178481 countsByYear W25281784812018 @default.
- W2528178481 countsByYear W25281784812019 @default.
- W2528178481 countsByYear W25281784812020 @default.
- W2528178481 countsByYear W25281784812021 @default.
- W2528178481 countsByYear W25281784812022 @default.
- W2528178481 countsByYear W25281784812023 @default.
- W2528178481 crossrefType "journal-article" @default.
- W2528178481 hasAuthorship W2528178481A5022043303 @default.
- W2528178481 hasAuthorship W2528178481A5079722503 @default.
- W2528178481 hasBestOaLocation W25281784812 @default.
- W2528178481 hasConcept C10390562 @default.
- W2528178481 hasConcept C105795698 @default.
- W2528178481 hasConcept C111368507 @default.
- W2528178481 hasConcept C121684516 @default.
- W2528178481 hasConcept C127313418 @default.
- W2528178481 hasConcept C127413603 @default.
- W2528178481 hasConcept C132651083 @default.
- W2528178481 hasConcept C137800194 @default.
- W2528178481 hasConcept C139945424 @default.
- W2528178481 hasConcept C146978453 @default.
- W2528178481 hasConcept C153294291 @default.
- W2528178481 hasConcept C186816422 @default.
- W2528178481 hasConcept C19269812 @default.
- W2528178481 hasConcept C203332170 @default.
- W2528178481 hasConcept C205203396 @default.
- W2528178481 hasConcept C205649164 @default.
- W2528178481 hasConcept C2524010 @default.