Matches in SemOpenAlex for { <https://semopenalex.org/work/W2528196013> ?p ?o ?g. }
- W2528196013 endingPage "8549" @default.
- W2528196013 startingPage "8537" @default.
- W2528196013 abstract "We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1-6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns, and [CN]ns of other reactive nitrogen-containing species by up to an order of magnitude. The ratio [N]ns/[CH3]ns scales proportionally with (but is 102-103 times smaller than) the ratio of the N2 to CH4 input mole fractions for the given values of p and P, but [N]ns/[CN]ns decreases (and thus the potential importance of CN in contributing to N-doped diamond growth increases) as p and P increase. Possible insights regarding the well-documented effects of trace N2 additions on the growth rates and morphologies of diamond films formed by CVD using MW-activated CH4/H2 gas mixtures are briefly considered." @default.
- W2528196013 created "2016-10-14" @default.
- W2528196013 creator A5009267490 @default.
- W2528196013 creator A5019743038 @default.
- W2528196013 creator A5020742606 @default.
- W2528196013 creator A5059689842 @default.
- W2528196013 creator A5065028540 @default.
- W2528196013 date "2016-10-24" @default.
- W2528196013 modified "2023-10-14" @default.
- W2528196013 title "Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH<sub>4</sub>/N<sub>2</sub>/H<sub>2</sub> Plasmas" @default.
- W2528196013 cites W1485701190 @default.
- W2528196013 cites W1626215346 @default.
- W2528196013 cites W1638836092 @default.
- W2528196013 cites W1964880240 @default.
- W2528196013 cites W1969657995 @default.
- W2528196013 cites W1973739842 @default.
- W2528196013 cites W1974531727 @default.
- W2528196013 cites W1974574041 @default.
- W2528196013 cites W1974692948 @default.
- W2528196013 cites W1978632615 @default.
- W2528196013 cites W1979165446 @default.
- W2528196013 cites W2003186631 @default.
- W2528196013 cites W2008699282 @default.
- W2528196013 cites W2012706094 @default.
- W2528196013 cites W2015759768 @default.
- W2528196013 cites W2017791544 @default.
- W2528196013 cites W2019065872 @default.
- W2528196013 cites W2022028647 @default.
- W2528196013 cites W2026914628 @default.
- W2528196013 cites W2028544299 @default.
- W2528196013 cites W2031033704 @default.
- W2528196013 cites W2034716879 @default.
- W2528196013 cites W2036267434 @default.
- W2528196013 cites W2037494942 @default.
- W2528196013 cites W2041133286 @default.
- W2528196013 cites W2046026548 @default.
- W2528196013 cites W2047415479 @default.
- W2528196013 cites W2049523040 @default.
- W2528196013 cites W2051247607 @default.
- W2528196013 cites W2052773763 @default.
- W2528196013 cites W2052919356 @default.
- W2528196013 cites W2056482159 @default.
- W2528196013 cites W2056924160 @default.
- W2528196013 cites W2059463276 @default.
- W2528196013 cites W2061961086 @default.
- W2528196013 cites W2062416775 @default.
- W2528196013 cites W2065109411 @default.
- W2528196013 cites W2070799920 @default.
- W2528196013 cites W2072016827 @default.
- W2528196013 cites W2074546111 @default.
- W2528196013 cites W2079388635 @default.
- W2528196013 cites W2079525684 @default.
- W2528196013 cites W2080128452 @default.
- W2528196013 cites W2081580844 @default.
- W2528196013 cites W2084571292 @default.
- W2528196013 cites W2089293599 @default.
- W2528196013 cites W2091734095 @default.
- W2528196013 cites W2093178632 @default.
- W2528196013 cites W2104991454 @default.
- W2528196013 cites W2121129233 @default.
- W2528196013 cites W2125827949 @default.
- W2528196013 cites W2140901270 @default.
- W2528196013 cites W2147095853 @default.
- W2528196013 cites W2228011032 @default.
- W2528196013 cites W2238511233 @default.
- W2528196013 cites W2568253711 @default.
- W2528196013 cites W2588420253 @default.
- W2528196013 doi "https://doi.org/10.1021/acs.jpca.6b09009" @default.
- W2528196013 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5293323" @default.
- W2528196013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27718565" @default.
- W2528196013 hasPublicationYear "2016" @default.
- W2528196013 type Work @default.
- W2528196013 sameAs 2528196013 @default.
- W2528196013 citedByCount "38" @default.
- W2528196013 countsByYear W25281960132017 @default.
- W2528196013 countsByYear W25281960132018 @default.
- W2528196013 countsByYear W25281960132019 @default.
- W2528196013 countsByYear W25281960132020 @default.
- W2528196013 countsByYear W25281960132021 @default.
- W2528196013 countsByYear W25281960132022 @default.
- W2528196013 countsByYear W25281960132023 @default.
- W2528196013 crossrefType "journal-article" @default.
- W2528196013 hasAuthorship W2528196013A5009267490 @default.
- W2528196013 hasAuthorship W2528196013A5019743038 @default.
- W2528196013 hasAuthorship W2528196013A5020742606 @default.
- W2528196013 hasAuthorship W2528196013A5059689842 @default.
- W2528196013 hasAuthorship W2528196013A5065028540 @default.
- W2528196013 hasBestOaLocation W25281960131 @default.
- W2528196013 hasConcept C102931765 @default.
- W2528196013 hasConcept C113196181 @default.
- W2528196013 hasConcept C121332964 @default.
- W2528196013 hasConcept C139066938 @default.
- W2528196013 hasConcept C147789679 @default.
- W2528196013 hasConcept C178790620 @default.
- W2528196013 hasConcept C181500209 @default.
- W2528196013 hasConcept C184779094 @default.
- W2528196013 hasConcept C185592680 @default.
- W2528196013 hasConcept C2776921476 @default.