Matches in SemOpenAlex for { <https://semopenalex.org/work/W2528637070> ?p ?o ?g. }
- W2528637070 endingPage "117" @default.
- W2528637070 startingPage "106" @default.
- W2528637070 abstract "As a non-Annex 1 Party to the United Nations Framework Convention on Climate Change (UNFCCC), Tanzania has committed to submit the results of the measurement, reporting, and verification of greenhouse gas (GHG) emissions reductions and removals by sinks under the Biennial Update Reports of national GHG inventory and mitigation actions. Thus, implementation of a robust and cost-efficient carbon accounting system is one of the prerequisites for receiving financial benefits under the REDD + mechanism. For estimation targeting large areas (i.e., country, region, and sub-regional), remote sensing techniques like airborne laser scanning (ALS) enable precise and timely estimation of biomass stocks and biomass changes. The main objective of the study was to compare alternative sampling strategies using ALS for estimating aboveground biomass (AGB) changes in miombo woodlands that would be suitable components of the National Forestry Resources Monitoring and Assessment (NAFORMA) program of Tanzania and of the Biennial Update Reports under UNFCCC. NAFORMA is the national forest inventory of Tanzania. The study area of 15,867 km2 was located in the administrative district of Liwale, south-eastern Tanzania and dominated by miombo woodlands. A longitudinal survey was carried out during two temporally consistent field and ALS data acquisition campaigns in 2012 and 2014. The field data were collected on permanent plots of the NAFORMA program. ALS measurements were acquired along 32 parallel strips spaced 5 km apart and covering approximately 25% of the study area. Estimation methods (1) solely based on the ground inventory data provided by NAFORMA and (2) by incorporating field observations and auxiliary variables derived from ALS data were pursued for assessing AGB change as the difference between estimated AGB in 2012 and 2014, together with the uncertainties related to sampling variability. The AGB estimates varied from 58.48 to 59.55 Mg ha− 1 in 2012 and between 58.20 and 59.29 Mg ha− 1 in 2014. The sampling variability (in terms of standard errors) was between 1.37 and 4.79 Mg ha− 1 in 2012, and 1.77 and 5.03 Mg ha− 1 in 2014. The mean AGB change varied from 0.11 to 0.35 Mg ha− 1 with standard errors of 0.31 to 0.85 Mg ha− 1. Compared to direct estimation based on field data only, the efficiency gain under ALS-assisted (design-based, model-assisted) estimation was 5–22%, and approximately 66% when using ALS data in a model-dependent estimation. The results provide statistically significant evidence of change in AGB over the 2-yr period spanned by the study only under model-dependent estimation at 50% confidence level, illustrating the great challenges of change estimation over such short time periods as requested for UNFCCC reporting." @default.
- W2528637070 created "2016-10-14" @default.
- W2528637070 creator A5010146389 @default.
- W2528637070 creator A5034250940 @default.
- W2528637070 creator A5040115327 @default.
- W2528637070 creator A5055005635 @default.
- W2528637070 creator A5065168037 @default.
- W2528637070 creator A5073215366 @default.
- W2528637070 creator A5085507280 @default.
- W2528637070 date "2017-01-01" @default.
- W2528637070 modified "2023-09-27" @default.
- W2528637070 title "Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data" @default.
- W2528637070 cites W1600914513 @default.
- W2528637070 cites W1684243805 @default.
- W2528637070 cites W1965710338 @default.
- W2528637070 cites W1973428156 @default.
- W2528637070 cites W1973523498 @default.
- W2528637070 cites W1975413319 @default.
- W2528637070 cites W1977517743 @default.
- W2528637070 cites W1988050292 @default.
- W2528637070 cites W1988550253 @default.
- W2528637070 cites W1989401377 @default.
- W2528637070 cites W1995602130 @default.
- W2528637070 cites W1995910507 @default.
- W2528637070 cites W1996263757 @default.
- W2528637070 cites W2001341908 @default.
- W2528637070 cites W2002730835 @default.
- W2528637070 cites W2021474216 @default.
- W2528637070 cites W2021623445 @default.
- W2528637070 cites W2029319256 @default.
- W2528637070 cites W2029875384 @default.
- W2528637070 cites W2033003748 @default.
- W2528637070 cites W2049297026 @default.
- W2528637070 cites W2050038074 @default.
- W2528637070 cites W2050182228 @default.
- W2528637070 cites W2052402549 @default.
- W2528637070 cites W2052438412 @default.
- W2528637070 cites W2054503844 @default.
- W2528637070 cites W2055314812 @default.
- W2528637070 cites W2070294178 @default.
- W2528637070 cites W2086581980 @default.
- W2528637070 cites W2092491956 @default.
- W2528637070 cites W2105048158 @default.
- W2528637070 cites W2134608924 @default.
- W2528637070 cites W2140294823 @default.
- W2528637070 cites W2156087253 @default.
- W2528637070 cites W2156374693 @default.
- W2528637070 cites W2163969843 @default.
- W2528637070 cites W2164850486 @default.
- W2528637070 cites W2188712988 @default.
- W2528637070 cites W2254244704 @default.
- W2528637070 cites W2278654200 @default.
- W2528637070 cites W2413573154 @default.
- W2528637070 cites W2485202016 @default.
- W2528637070 cites W2969347768 @default.
- W2528637070 cites W4239119483 @default.
- W2528637070 cites W4244212783 @default.
- W2528637070 doi "https://doi.org/10.1016/j.rse.2016.10.046" @default.
- W2528637070 hasPublicationYear "2017" @default.
- W2528637070 type Work @default.
- W2528637070 sameAs 2528637070 @default.
- W2528637070 citedByCount "46" @default.
- W2528637070 countsByYear W25286370702017 @default.
- W2528637070 countsByYear W25286370702018 @default.
- W2528637070 countsByYear W25286370702019 @default.
- W2528637070 countsByYear W25286370702020 @default.
- W2528637070 countsByYear W25286370702021 @default.
- W2528637070 countsByYear W25286370702022 @default.
- W2528637070 countsByYear W25286370702023 @default.
- W2528637070 crossrefType "journal-article" @default.
- W2528637070 hasAuthorship W2528637070A5010146389 @default.
- W2528637070 hasAuthorship W2528637070A5034250940 @default.
- W2528637070 hasAuthorship W2528637070A5040115327 @default.
- W2528637070 hasAuthorship W2528637070A5055005635 @default.
- W2528637070 hasAuthorship W2528637070A5065168037 @default.
- W2528637070 hasAuthorship W2528637070A5073215366 @default.
- W2528637070 hasAuthorship W2528637070A5085507280 @default.
- W2528637070 hasConcept C107826830 @default.
- W2528637070 hasConcept C115540264 @default.
- W2528637070 hasConcept C132651083 @default.
- W2528637070 hasConcept C147103442 @default.
- W2528637070 hasConcept C162324750 @default.
- W2528637070 hasConcept C187736073 @default.
- W2528637070 hasConcept C18903297 @default.
- W2528637070 hasConcept C203174812 @default.
- W2528637070 hasConcept C205649164 @default.
- W2528637070 hasConcept C2778539042 @default.
- W2528637070 hasConcept C2778755073 @default.
- W2528637070 hasConcept C2779357621 @default.
- W2528637070 hasConcept C2781420532 @default.
- W2528637070 hasConcept C28631016 @default.
- W2528637070 hasConcept C39432304 @default.
- W2528637070 hasConcept C47737302 @default.
- W2528637070 hasConcept C54286561 @default.
- W2528637070 hasConcept C58640448 @default.
- W2528637070 hasConcept C62649853 @default.
- W2528637070 hasConcept C86803240 @default.
- W2528637070 hasConcept C91375879 @default.