Matches in SemOpenAlex for { <https://semopenalex.org/work/W2528876300> ?p ?o ?g. }
- W2528876300 endingPage "215" @default.
- W2528876300 startingPage "197" @default.
- W2528876300 abstract "Multi-domain sentiment analysis consists in estimating the polarity of a given text by exploiting domain-specific information. One of the main issues common to the approaches discussed in the literature is their poor capabilities of being applied on domains which are different from those used for building the opinion model. In this paper, we will present an approach exploiting the linguistic overlap between domains to build sentiment models supporting polarity inference for documents belonging to every domain. Word embeddings together with a deep learning architecture have been implemented for enabling the building of multi-domain sentiment model. The proposed technique is validated by following the Dranziera protocol in order to ease the repeatability of the experiments and the comparison of the results. The outcomes demonstrate the effectiveness of the proposed approach and also set a plausible starting point for future work." @default.
- W2528876300 created "2016-10-14" @default.
- W2528876300 creator A5069303169 @default.
- W2528876300 date "2018-01-01" @default.
- W2528876300 modified "2023-09-25" @default.
- W2528876300 title "The NeuroSent System at ESWC-2018 Challenge on Semantic Sentiment Analysis" @default.
- W2528876300 cites W1546918591 @default.
- W2528876300 cites W1588482716 @default.
- W2528876300 cites W1971788568 @default.
- W2528876300 cites W1991873845 @default.
- W2528876300 cites W1998257453 @default.
- W2528876300 cites W1998442272 @default.
- W2528876300 cites W2011107737 @default.
- W2528876300 cites W2028140375 @default.
- W2528876300 cites W2049493498 @default.
- W2528876300 cites W2063998312 @default.
- W2528876300 cites W2064675550 @default.
- W2528876300 cites W2084046180 @default.
- W2528876300 cites W2100897593 @default.
- W2528876300 cites W2115023510 @default.
- W2528876300 cites W2117261786 @default.
- W2528876300 cites W2130261305 @default.
- W2528876300 cites W2130530832 @default.
- W2528876300 cites W2159457224 @default.
- W2528876300 cites W2166588037 @default.
- W2528876300 cites W2166706824 @default.
- W2528876300 cites W2171645516 @default.
- W2528876300 cites W2185377482 @default.
- W2528876300 cites W2298223978 @default.
- W2528876300 cites W2527680541 @default.
- W2528876300 cites W2528040733 @default.
- W2528876300 cites W2528289822 @default.
- W2528876300 cites W2577197643 @default.
- W2528876300 cites W2617378603 @default.
- W2528876300 cites W2687524069 @default.
- W2528876300 cites W2765494712 @default.
- W2528876300 cites W2766084154 @default.
- W2528876300 cites W2766975035 @default.
- W2528876300 cites W2767617828 @default.
- W2528876300 cites W2783477514 @default.
- W2528876300 cites W2805207564 @default.
- W2528876300 cites W2805679416 @default.
- W2528876300 cites W4233560649 @default.
- W2528876300 cites W4237730655 @default.
- W2528876300 cites W4238285116 @default.
- W2528876300 cites W54295067 @default.
- W2528876300 cites W56640875 @default.
- W2528876300 cites W66373487 @default.
- W2528876300 doi "https://doi.org/10.1007/978-3-030-00072-1_16" @default.
- W2528876300 hasPublicationYear "2018" @default.
- W2528876300 type Work @default.
- W2528876300 sameAs 2528876300 @default.
- W2528876300 citedByCount "4" @default.
- W2528876300 countsByYear W25288763002017 @default.
- W2528876300 countsByYear W25288763002018 @default.
- W2528876300 crossrefType "book-chapter" @default.
- W2528876300 hasAuthorship W2528876300A5069303169 @default.
- W2528876300 hasConcept C119857082 @default.
- W2528876300 hasConcept C124101348 @default.
- W2528876300 hasConcept C134306372 @default.
- W2528876300 hasConcept C138885662 @default.
- W2528876300 hasConcept C1491633281 @default.
- W2528876300 hasConcept C154945302 @default.
- W2528876300 hasConcept C177264268 @default.
- W2528876300 hasConcept C199360897 @default.
- W2528876300 hasConcept C204321447 @default.
- W2528876300 hasConcept C23123220 @default.
- W2528876300 hasConcept C2524010 @default.
- W2528876300 hasConcept C2776214188 @default.
- W2528876300 hasConcept C2777361361 @default.
- W2528876300 hasConcept C28719098 @default.
- W2528876300 hasConcept C33923547 @default.
- W2528876300 hasConcept C36503486 @default.
- W2528876300 hasConcept C41008148 @default.
- W2528876300 hasConcept C41895202 @default.
- W2528876300 hasConcept C54355233 @default.
- W2528876300 hasConcept C66402592 @default.
- W2528876300 hasConcept C86803240 @default.
- W2528876300 hasConcept C90805587 @default.
- W2528876300 hasConceptScore W2528876300C119857082 @default.
- W2528876300 hasConceptScore W2528876300C124101348 @default.
- W2528876300 hasConceptScore W2528876300C134306372 @default.
- W2528876300 hasConceptScore W2528876300C138885662 @default.
- W2528876300 hasConceptScore W2528876300C1491633281 @default.
- W2528876300 hasConceptScore W2528876300C154945302 @default.
- W2528876300 hasConceptScore W2528876300C177264268 @default.
- W2528876300 hasConceptScore W2528876300C199360897 @default.
- W2528876300 hasConceptScore W2528876300C204321447 @default.
- W2528876300 hasConceptScore W2528876300C23123220 @default.
- W2528876300 hasConceptScore W2528876300C2524010 @default.
- W2528876300 hasConceptScore W2528876300C2776214188 @default.
- W2528876300 hasConceptScore W2528876300C2777361361 @default.
- W2528876300 hasConceptScore W2528876300C28719098 @default.
- W2528876300 hasConceptScore W2528876300C33923547 @default.
- W2528876300 hasConceptScore W2528876300C36503486 @default.
- W2528876300 hasConceptScore W2528876300C41008148 @default.
- W2528876300 hasConceptScore W2528876300C41895202 @default.
- W2528876300 hasConceptScore W2528876300C54355233 @default.