Matches in SemOpenAlex for { <https://semopenalex.org/work/W2528930101> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2528930101 abstract "We consider the problem of estimating the slope function in a functional regression with a scalar response and a functional covariate. This central problem of functional data analysis is well known to be ill-posed, thus requiring a regularised estimation procedure. The two most commonly used approaches are based on spectral truncation or Tikhonov regularisation of the empirical covariance operator. In principle, Tikhonov regularisation is the more canonical choice. Compared to spectral truncation, it is robust to eigenvalue ties, while it attains the optimal minimax rate of convergence in the mean squared sense, and not just in a concentration probability sense. In this paper, we show that, surprisingly, one can strictly improve upon the performance of the Tikhonov estimator in finite samples by means of a linear estimator, while retaining its stability and asymptotic properties by combining it with a form of spectral truncation. Specifically, we construct an estimator that additively decomposes the functional covariate by projecting it onto two orthogonal subspaces defined via functional PCA; it then applies Tikhonov regularisation to the one component, while leaving the other component unregularised. We prove that when the covariate is Gaussian, this hybrid estimator uniformly improves upon the MSE of the Tikhonov estimator in a non-asymptotic sense, effectively rendering it inadmissible. This domination is shown to also persist under discrete observation of the covariate function. The hybrid estimator is linear, straightforward to construct in practice, and with no computational overhead relative to the standard regularisation methods. By means of simulation, it is shown to furnish sizeable gains even for modest sample sizes." @default.
- W2528930101 created "2016-10-14" @default.
- W2528930101 creator A5002237733 @default.
- W2528930101 creator A5020727459 @default.
- W2528930101 date "2016-10-04" @default.
- W2528930101 modified "2023-09-27" @default.
- W2528930101 title "Hybrid Regularisation of Functional Linear Models" @default.
- W2528930101 cites W15639593 @default.
- W2528930101 cites W1597891688 @default.
- W2528930101 cites W163215356 @default.
- W2528930101 cites W1989226486 @default.
- W2528930101 cites W2008493423 @default.
- W2528930101 cites W2009416915 @default.
- W2528930101 cites W2010074546 @default.
- W2528930101 cites W2036144551 @default.
- W2528930101 cites W2038580754 @default.
- W2528930101 cites W2047028564 @default.
- W2528930101 cites W2072412280 @default.
- W2528930101 cites W2081874429 @default.
- W2528930101 cites W2090522114 @default.
- W2528930101 cites W2149846618 @default.
- W2528930101 cites W3100683829 @default.
- W2528930101 cites W3101449523 @default.
- W2528930101 cites W649348608 @default.
- W2528930101 hasPublicationYear "2016" @default.
- W2528930101 type Work @default.
- W2528930101 sameAs 2528930101 @default.
- W2528930101 citedByCount "0" @default.
- W2528930101 crossrefType "posted-content" @default.
- W2528930101 hasAuthorship W2528930101A5002237733 @default.
- W2528930101 hasAuthorship W2528930101A5020727459 @default.
- W2528930101 hasConcept C105795698 @default.
- W2528930101 hasConcept C106195933 @default.
- W2528930101 hasConcept C119043178 @default.
- W2528930101 hasConcept C126255220 @default.
- W2528930101 hasConcept C133939421 @default.
- W2528930101 hasConcept C134306372 @default.
- W2528930101 hasConcept C135252773 @default.
- W2528930101 hasConcept C149728462 @default.
- W2528930101 hasConcept C152442038 @default.
- W2528930101 hasConcept C165646398 @default.
- W2528930101 hasConcept C185429906 @default.
- W2528930101 hasConcept C28826006 @default.
- W2528930101 hasConcept C33923547 @default.
- W2528930101 hasConcept C51820054 @default.
- W2528930101 hasConceptScore W2528930101C105795698 @default.
- W2528930101 hasConceptScore W2528930101C106195933 @default.
- W2528930101 hasConceptScore W2528930101C119043178 @default.
- W2528930101 hasConceptScore W2528930101C126255220 @default.
- W2528930101 hasConceptScore W2528930101C133939421 @default.
- W2528930101 hasConceptScore W2528930101C134306372 @default.
- W2528930101 hasConceptScore W2528930101C135252773 @default.
- W2528930101 hasConceptScore W2528930101C149728462 @default.
- W2528930101 hasConceptScore W2528930101C152442038 @default.
- W2528930101 hasConceptScore W2528930101C165646398 @default.
- W2528930101 hasConceptScore W2528930101C185429906 @default.
- W2528930101 hasConceptScore W2528930101C28826006 @default.
- W2528930101 hasConceptScore W2528930101C33923547 @default.
- W2528930101 hasConceptScore W2528930101C51820054 @default.
- W2528930101 hasLocation W25289301011 @default.
- W2528930101 hasOpenAccess W2528930101 @default.
- W2528930101 hasPrimaryLocation W25289301011 @default.
- W2528930101 hasRelatedWork W1040492 @default.
- W2528930101 hasRelatedWork W2164941694 @default.
- W2528930101 hasRelatedWork W2188553794 @default.
- W2528930101 hasRelatedWork W2319279928 @default.
- W2528930101 hasRelatedWork W2336764469 @default.
- W2528930101 hasRelatedWork W2402683670 @default.
- W2528930101 hasRelatedWork W2610558234 @default.
- W2528930101 hasRelatedWork W2742421171 @default.
- W2528930101 hasRelatedWork W2806801315 @default.
- W2528930101 hasRelatedWork W2887794029 @default.
- W2528930101 hasRelatedWork W2951460895 @default.
- W2528930101 hasRelatedWork W2981265107 @default.
- W2528930101 hasRelatedWork W3021467427 @default.
- W2528930101 hasRelatedWork W3022344114 @default.
- W2528930101 hasRelatedWork W3034432309 @default.
- W2528930101 hasRelatedWork W3036801166 @default.
- W2528930101 hasRelatedWork W3037981576 @default.
- W2528930101 hasRelatedWork W3103601877 @default.
- W2528930101 hasRelatedWork W3123347389 @default.
- W2528930101 hasRelatedWork W3119113059 @default.
- W2528930101 isParatext "false" @default.
- W2528930101 isRetracted "false" @default.
- W2528930101 magId "2528930101" @default.
- W2528930101 workType "article" @default.