Matches in SemOpenAlex for { <https://semopenalex.org/work/W2529053463> ?p ?o ?g. }
- W2529053463 abstract "This thesis presents spiking neural architectures which simulate the sound localisation capability of the mammalian auditory pathways. This localisation ability is achieved by exploiting important differences in the sound stimulus received by each ear, known as binaural cues. Interaural time difference and interaural intensity difference are the two binaural cues which play the most significant role in mammalian sound localisation. These cues are processed by different regions within the auditory pathways and enable the localisation of sounds at different frequency ranges; interaural time difference is used to localise low frequency sounds whereas interaural intensity difference localises high frequency sounds. Interaural time difference refers to the different points in time at which a sound from a single location arrives at each ear and interaural intensity difference refers to the difference in sound pressure levels of the sound at each ear, measured in decibels. Taking inspiration from the mammalian brain, two spiking neural network topologies were designed to extract each of these cues. The architecture of the spiking neural network designed to process the interaural time difference cue was inspired by the medial superior olive. The lateral superior olive was the inspiration for the architecture designed to process the interaural intensity difference cue. The development of these spiking neural network architectures required the integration of other biological models, such as an auditory periphery (cochlea) model, models of bushy cells and the medial nucleus of the trapezoid body, leaky integrate and fire spiking neurons, facilitating synapses, receptive fields and the appropriate use of excitatory and inhibitory neurons. Two biologically inspired learning algorithms were used to train the architectures to perform sound localisation. Experimentally derived HRTF acoustical data from adult domestic cats was employed to validate the localisation ability of the two architectures. The localisation abilities of the two models are comparable to other computational techniques employed in the literature. The experimental results demonstrate that the two SNN models behave in a similar way to the mammalian auditory system, i.e. the spiking neural network for interaural time difference extraction performs best when it is localising low frequency data, and the interaural intensity difference spiking neuron model performs best when it is localising high frequency data. Thus, the combined models form a duplex system of sound localisation. Additionally, both spiking neural network architectures show a high degree of robustness when the HRTF acoustical data is corrupted by noise." @default.
- W2529053463 created "2016-10-14" @default.
- W2529053463 creator A5063632288 @default.
- W2529053463 date "2010-04-01" @default.
- W2529053463 modified "2023-09-27" @default.
- W2529053463 title "Post-Cochlear Auditory Modelling for Sound Localisation using Bio-Inspired Techniques" @default.
- W2529053463 cites W1230210074 @default.
- W2529053463 cites W145014596 @default.
- W2529053463 cites W1486852018 @default.
- W2529053463 cites W1491481853 @default.
- W2529053463 cites W1492261510 @default.
- W2529053463 cites W1497505825 @default.
- W2529053463 cites W1512500886 @default.
- W2529053463 cites W1512571526 @default.
- W2529053463 cites W1534797293 @default.
- W2529053463 cites W1559381497 @default.
- W2529053463 cites W1563192623 @default.
- W2529053463 cites W1573262924 @default.
- W2529053463 cites W1578332560 @default.
- W2529053463 cites W1603383296 @default.
- W2529053463 cites W1753719325 @default.
- W2529053463 cites W1766286139 @default.
- W2529053463 cites W1793311521 @default.
- W2529053463 cites W1857233242 @default.
- W2529053463 cites W1908388707 @default.
- W2529053463 cites W1909372630 @default.
- W2529053463 cites W1918121117 @default.
- W2529053463 cites W1972295269 @default.
- W2529053463 cites W1973830575 @default.
- W2529053463 cites W1975147444 @default.
- W2529053463 cites W1980527470 @default.
- W2529053463 cites W1982431017 @default.
- W2529053463 cites W1982580897 @default.
- W2529053463 cites W1983624302 @default.
- W2529053463 cites W1986630289 @default.
- W2529053463 cites W1990323937 @default.
- W2529053463 cites W1992601125 @default.
- W2529053463 cites W199515402 @default.
- W2529053463 cites W1995341919 @default.
- W2529053463 cites W1999354778 @default.
- W2529053463 cites W2000129051 @default.
- W2529053463 cites W2003530223 @default.
- W2529053463 cites W2008002200 @default.
- W2529053463 cites W2011420265 @default.
- W2529053463 cites W2015647735 @default.
- W2529053463 cites W2015792005 @default.
- W2529053463 cites W2016107344 @default.
- W2529053463 cites W2022995207 @default.
- W2529053463 cites W2023897534 @default.
- W2529053463 cites W2024152195 @default.
- W2529053463 cites W2027024812 @default.
- W2529053463 cites W2030879797 @default.
- W2529053463 cites W2036064330 @default.
- W2529053463 cites W2042145477 @default.
- W2529053463 cites W2045282266 @default.
- W2529053463 cites W2047699602 @default.
- W2529053463 cites W2056522351 @default.
- W2529053463 cites W2058755553 @default.
- W2529053463 cites W2059148040 @default.
- W2529053463 cites W2061897041 @default.
- W2529053463 cites W2062670775 @default.
- W2529053463 cites W2064847732 @default.
- W2529053463 cites W2065283999 @default.
- W2529053463 cites W2071383468 @default.
- W2529053463 cites W2072860982 @default.
- W2529053463 cites W2075183645 @default.
- W2529053463 cites W2079828414 @default.
- W2529053463 cites W2080033848 @default.
- W2529053463 cites W2080074351 @default.
- W2529053463 cites W2085037871 @default.
- W2529053463 cites W2088915398 @default.
- W2529053463 cites W2096317604 @default.
- W2529053463 cites W2096471577 @default.
- W2529053463 cites W2096473662 @default.
- W2529053463 cites W2099998584 @default.
- W2529053463 cites W2103370854 @default.
- W2529053463 cites W2104422351 @default.
- W2529053463 cites W2105848238 @default.
- W2529053463 cites W2106925337 @default.
- W2529053463 cites W2110262641 @default.
- W2529053463 cites W2115474882 @default.
- W2529053463 cites W2118706537 @default.
- W2529053463 cites W2119644986 @default.
- W2529053463 cites W2120475512 @default.
- W2529053463 cites W2121065047 @default.
- W2529053463 cites W2122584206 @default.
- W2529053463 cites W2123745704 @default.
- W2529053463 cites W2124256822 @default.
- W2529053463 cites W2129425583 @default.
- W2529053463 cites W2129618392 @default.
- W2529053463 cites W2131386373 @default.
- W2529053463 cites W2135955024 @default.
- W2529053463 cites W2137575989 @default.
- W2529053463 cites W2139411414 @default.
- W2529053463 cites W2140059421 @default.
- W2529053463 cites W2141925842 @default.
- W2529053463 cites W2142281155 @default.
- W2529053463 cites W2147372985 @default.
- W2529053463 cites W2148389554 @default.
- W2529053463 cites W2148654448 @default.