Matches in SemOpenAlex for { <https://semopenalex.org/work/W2529866303> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2529866303 endingPage "1811" @default.
- W2529866303 startingPage "1807" @default.
- W2529866303 abstract "Endmember variability is receiving growing attention in the hyperspectral image (HSI) unmixing field. As an extension of linear mixing model (LMM), normal compositional model (NCM) assumes that the pixels of the HSI are linear combinations of random endmembers (as opposed to deterministic for the LMM). NCM explains spectral differences between the observed pixels and endmembers as endmember mixtures and endmember variances, the characteristic of which makes it possible to incorporate the endmember spectral variability in the unmixing process. But the tricky issue for using NCM is the estimation of endmember variances inhering in materials. This letter presents a new approach, termed region-based stochastic expectation maximization, to learn endmember variances from spatial information. The idea is assuming that significant homogeneous regions (composed of similar materials or similar mixture) exist in the HSI, such regions usually give visual indication that spatial-based spectral variability really exists in hyperspectral data. As modeled in NCM, spectral variances in homogeneous region can be approximately linear represented by endmember variances. Hence, given region-based spectral variances, we are able to learn endmember variances. In experiments with simulated data and Moffett field data, the proposed approach competes with other unmixing methods considering endmember variability, with better endmember variance estimates." @default.
- W2529866303 created "2016-10-21" @default.
- W2529866303 creator A5022920106 @default.
- W2529866303 creator A5036065638 @default.
- W2529866303 creator A5066378186 @default.
- W2529866303 date "2016-12-01" @default.
- W2529866303 modified "2023-10-18" @default.
- W2529866303 title "Region-Based Estimate of Endmember Variances for Hyperspectral Image Unmixing" @default.
- W2529866303 cites W1531358673 @default.
- W2529866303 cites W1965340435 @default.
- W2529866303 cites W1972293418 @default.
- W2529866303 cites W2023518723 @default.
- W2529866303 cites W2070424424 @default.
- W2529866303 cites W2080920313 @default.
- W2529866303 cites W2127062304 @default.
- W2529866303 cites W2138339196 @default.
- W2529866303 cites W2143457518 @default.
- W2529866303 cites W2144881411 @default.
- W2529866303 cites W2157321686 @default.
- W2529866303 cites W2163886442 @default.
- W2529866303 doi "https://doi.org/10.1109/lgrs.2016.2614101" @default.
- W2529866303 hasPublicationYear "2016" @default.
- W2529866303 type Work @default.
- W2529866303 sameAs 2529866303 @default.
- W2529866303 citedByCount "8" @default.
- W2529866303 countsByYear W25298663032017 @default.
- W2529866303 countsByYear W25298663032019 @default.
- W2529866303 countsByYear W25298663032020 @default.
- W2529866303 countsByYear W25298663032021 @default.
- W2529866303 countsByYear W25298663032022 @default.
- W2529866303 countsByYear W25298663032023 @default.
- W2529866303 crossrefType "journal-article" @default.
- W2529866303 hasAuthorship W2529866303A5022920106 @default.
- W2529866303 hasAuthorship W2529866303A5036065638 @default.
- W2529866303 hasAuthorship W2529866303A5066378186 @default.
- W2529866303 hasConcept C121955636 @default.
- W2529866303 hasConcept C144133560 @default.
- W2529866303 hasConcept C153180895 @default.
- W2529866303 hasConcept C154945302 @default.
- W2529866303 hasConcept C159078339 @default.
- W2529866303 hasConcept C160633673 @default.
- W2529866303 hasConcept C196083921 @default.
- W2529866303 hasConcept C33923547 @default.
- W2529866303 hasConcept C41008148 @default.
- W2529866303 hasConcept C58237817 @default.
- W2529866303 hasConceptScore W2529866303C121955636 @default.
- W2529866303 hasConceptScore W2529866303C144133560 @default.
- W2529866303 hasConceptScore W2529866303C153180895 @default.
- W2529866303 hasConceptScore W2529866303C154945302 @default.
- W2529866303 hasConceptScore W2529866303C159078339 @default.
- W2529866303 hasConceptScore W2529866303C160633673 @default.
- W2529866303 hasConceptScore W2529866303C196083921 @default.
- W2529866303 hasConceptScore W2529866303C33923547 @default.
- W2529866303 hasConceptScore W2529866303C41008148 @default.
- W2529866303 hasConceptScore W2529866303C58237817 @default.
- W2529866303 hasFunder F4320321001 @default.
- W2529866303 hasFunder F4320334986 @default.
- W2529866303 hasIssue "12" @default.
- W2529866303 hasLocation W25298663031 @default.
- W2529866303 hasOpenAccess W2529866303 @default.
- W2529866303 hasPrimaryLocation W25298663031 @default.
- W2529866303 hasRelatedWork W2040756827 @default.
- W2529866303 hasRelatedWork W2051769241 @default.
- W2529866303 hasRelatedWork W2090167465 @default.
- W2529866303 hasRelatedWork W2094596373 @default.
- W2529866303 hasRelatedWork W2099703033 @default.
- W2529866303 hasRelatedWork W2137052100 @default.
- W2529866303 hasRelatedWork W2353831177 @default.
- W2529866303 hasRelatedWork W2355447943 @default.
- W2529866303 hasRelatedWork W2385169568 @default.
- W2529866303 hasRelatedWork W3036216071 @default.
- W2529866303 hasVolume "13" @default.
- W2529866303 isParatext "false" @default.
- W2529866303 isRetracted "false" @default.
- W2529866303 magId "2529866303" @default.
- W2529866303 workType "article" @default.