Matches in SemOpenAlex for { <https://semopenalex.org/work/W2529943390> ?p ?o ?g. }
- W2529943390 endingPage "82" @default.
- W2529943390 startingPage "71" @default.
- W2529943390 abstract "This paper proposes a greedy double sparse (DS) dictionary learning algorithm for speech signals, where the dictionary is the product of a predefined base dictionary, and a sparse matrix. Exploiting the DS structure, we show that the dictionary can be learned efficiently in the coefficient domain rather than the signal domain. It is achieved by modifying the objective function such that all the matrices involved in the coefficient domain are either sparse or near-sparse, thus making the dictionary update stage fast. The dictionary is learned on frames extracted from a speech signal using a hierarchical subset selection approach. Here, each dictionary atom is a training speech frame, chosen in accordance to its energy contribution for representing all other training speech frames. In other words, dictionary atoms are encouraged to be close to the training signals that uses them in their decomposition. After each atom update the modified residual serves as the new training data, thus the information learned by the previous atoms guides the update of subsequent dictionary atoms. In addition, we have shown that for a suitable choice of the base dictionary, storage efficiency of the DS dictionary can be further improved. Finally, the efficiency of the proposed method is demonstrated for the problem of speech representation and speech denoising." @default.
- W2529943390 created "2016-10-21" @default.
- W2529943390 creator A5025998364 @default.
- W2529943390 creator A5056281424 @default.
- W2529943390 creator A5075520691 @default.
- W2529943390 date "2016-12-01" @default.
- W2529943390 modified "2023-10-18" @default.
- W2529943390 title "Greedy double sparse dictionary learning for sparse representation of speech signals" @default.
- W2529943390 cites W1890834058 @default.
- W2529943390 cites W1963932623 @default.
- W2529943390 cites W1970895676 @default.
- W2529943390 cites W1974815624 @default.
- W2529943390 cites W1982334922 @default.
- W2529943390 cites W1992008660 @default.
- W2529943390 cites W2000062601 @default.
- W2529943390 cites W2017692724 @default.
- W2529943390 cites W2034683677 @default.
- W2529943390 cites W2055034266 @default.
- W2529943390 cites W2061129424 @default.
- W2529943390 cites W2063978378 @default.
- W2529943390 cites W2066125712 @default.
- W2529943390 cites W2081096848 @default.
- W2529943390 cites W2099321050 @default.
- W2529943390 cites W2105892554 @default.
- W2529943390 cites W2111854888 @default.
- W2529943390 cites W2113393671 @default.
- W2529943390 cites W2119550179 @default.
- W2529943390 cites W2124973575 @default.
- W2529943390 cites W2126534699 @default.
- W2529943390 cites W2129812935 @default.
- W2529943390 cites W2138926359 @default.
- W2529943390 cites W2141520175 @default.
- W2529943390 cites W2148037787 @default.
- W2529943390 cites W2149053750 @default.
- W2529943390 cites W2152061189 @default.
- W2529943390 cites W2156593994 @default.
- W2529943390 cites W2158940042 @default.
- W2529943390 cites W2160547390 @default.
- W2529943390 cites W2163398148 @default.
- W2529943390 cites W2164452299 @default.
- W2529943390 cites W2165878107 @default.
- W2529943390 cites W2343141272 @default.
- W2529943390 cites W3098549467 @default.
- W2529943390 cites W629790823 @default.
- W2529943390 cites W634011990 @default.
- W2529943390 doi "https://doi.org/10.1016/j.specom.2016.09.004" @default.
- W2529943390 hasPublicationYear "2016" @default.
- W2529943390 type Work @default.
- W2529943390 sameAs 2529943390 @default.
- W2529943390 citedByCount "12" @default.
- W2529943390 countsByYear W25299433902017 @default.
- W2529943390 countsByYear W25299433902018 @default.
- W2529943390 countsByYear W25299433902019 @default.
- W2529943390 countsByYear W25299433902020 @default.
- W2529943390 countsByYear W25299433902021 @default.
- W2529943390 countsByYear W25299433902022 @default.
- W2529943390 countsByYear W25299433902023 @default.
- W2529943390 crossrefType "journal-article" @default.
- W2529943390 hasAuthorship W2529943390A5025998364 @default.
- W2529943390 hasAuthorship W2529943390A5056281424 @default.
- W2529943390 hasAuthorship W2529943390A5075520691 @default.
- W2529943390 hasConcept C11413529 @default.
- W2529943390 hasConcept C121332964 @default.
- W2529943390 hasConcept C124066611 @default.
- W2529943390 hasConcept C124851039 @default.
- W2529943390 hasConcept C153180895 @default.
- W2529943390 hasConcept C154771677 @default.
- W2529943390 hasConcept C154945302 @default.
- W2529943390 hasConcept C155512373 @default.
- W2529943390 hasConcept C156872377 @default.
- W2529943390 hasConcept C163716315 @default.
- W2529943390 hasConcept C28490314 @default.
- W2529943390 hasConcept C41008148 @default.
- W2529943390 hasConcept C51823790 @default.
- W2529943390 hasConcept C56372850 @default.
- W2529943390 hasConcept C62520636 @default.
- W2529943390 hasConceptScore W2529943390C11413529 @default.
- W2529943390 hasConceptScore W2529943390C121332964 @default.
- W2529943390 hasConceptScore W2529943390C124066611 @default.
- W2529943390 hasConceptScore W2529943390C124851039 @default.
- W2529943390 hasConceptScore W2529943390C153180895 @default.
- W2529943390 hasConceptScore W2529943390C154771677 @default.
- W2529943390 hasConceptScore W2529943390C154945302 @default.
- W2529943390 hasConceptScore W2529943390C155512373 @default.
- W2529943390 hasConceptScore W2529943390C156872377 @default.
- W2529943390 hasConceptScore W2529943390C163716315 @default.
- W2529943390 hasConceptScore W2529943390C28490314 @default.
- W2529943390 hasConceptScore W2529943390C41008148 @default.
- W2529943390 hasConceptScore W2529943390C51823790 @default.
- W2529943390 hasConceptScore W2529943390C56372850 @default.
- W2529943390 hasConceptScore W2529943390C62520636 @default.
- W2529943390 hasLocation W25299433901 @default.
- W2529943390 hasOpenAccess W2529943390 @default.
- W2529943390 hasPrimaryLocation W25299433901 @default.
- W2529943390 hasRelatedWork W1520740474 @default.
- W2529943390 hasRelatedWork W1577074073 @default.
- W2529943390 hasRelatedWork W2035646574 @default.
- W2529943390 hasRelatedWork W2047275718 @default.