Matches in SemOpenAlex for { <https://semopenalex.org/work/W2530382561> ?p ?o ?g. }
- W2530382561 endingPage "e0164568" @default.
- W2530382561 startingPage "e0164568" @default.
- W2530382561 abstract "Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models.In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables.Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable.This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method." @default.
- W2530382561 created "2016-10-21" @default.
- W2530382561 creator A5010155676 @default.
- W2530382561 creator A5030423931 @default.
- W2530382561 creator A5049055621 @default.
- W2530382561 creator A5078854904 @default.
- W2530382561 creator A5086320066 @default.
- W2530382561 date "2016-10-10" @default.
- W2530382561 modified "2023-10-16" @default.
- W2530382561 title "Explaining Support Vector Machines: A Color Based Nomogram" @default.
- W2530382561 cites W1060145766 @default.
- W2530382561 cites W1491709519 @default.
- W2530382561 cites W1496317909 @default.
- W2530382561 cites W1513618424 @default.
- W2530382561 cites W1535744947 @default.
- W2530382561 cites W1540550673 @default.
- W2530382561 cites W1548698874 @default.
- W2530382561 cites W1595438755 @default.
- W2530382561 cites W1596717185 @default.
- W2530382561 cites W1831050183 @default.
- W2530382561 cites W1966517947 @default.
- W2530382561 cites W1990763503 @default.
- W2530382561 cites W1997073913 @default.
- W2530382561 cites W2001619934 @default.
- W2530382561 cites W2006252838 @default.
- W2530382561 cites W2006830304 @default.
- W2530382561 cites W2012942264 @default.
- W2530382561 cites W2014736305 @default.
- W2530382561 cites W2032273024 @default.
- W2530382561 cites W2049067904 @default.
- W2530382561 cites W2058280658 @default.
- W2530382561 cites W2061627538 @default.
- W2530382561 cites W2101392314 @default.
- W2530382561 cites W2128488032 @default.
- W2530382561 cites W2140095548 @default.
- W2530382561 cites W2140392267 @default.
- W2530382561 cites W2152497556 @default.
- W2530382561 cites W2157963336 @default.
- W2530382561 cites W2159737176 @default.
- W2530382561 cites W2160979370 @default.
- W2530382561 cites W4250298599 @default.
- W2530382561 doi "https://doi.org/10.1371/journal.pone.0164568" @default.
- W2530382561 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5056733" @default.
- W2530382561 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27723811" @default.
- W2530382561 hasPublicationYear "2016" @default.
- W2530382561 type Work @default.
- W2530382561 sameAs 2530382561 @default.
- W2530382561 citedByCount "29" @default.
- W2530382561 countsByYear W25303825612017 @default.
- W2530382561 countsByYear W25303825612018 @default.
- W2530382561 countsByYear W25303825612019 @default.
- W2530382561 countsByYear W25303825612020 @default.
- W2530382561 countsByYear W25303825612021 @default.
- W2530382561 countsByYear W25303825612022 @default.
- W2530382561 countsByYear W25303825612023 @default.
- W2530382561 crossrefType "journal-article" @default.
- W2530382561 hasAuthorship W2530382561A5010155676 @default.
- W2530382561 hasAuthorship W2530382561A5030423931 @default.
- W2530382561 hasAuthorship W2530382561A5049055621 @default.
- W2530382561 hasAuthorship W2530382561A5078854904 @default.
- W2530382561 hasAuthorship W2530382561A5086320066 @default.
- W2530382561 hasBestOaLocation W25303825611 @default.
- W2530382561 hasConcept C114614502 @default.
- W2530382561 hasConcept C119857082 @default.
- W2530382561 hasConcept C120068334 @default.
- W2530382561 hasConcept C122280245 @default.
- W2530382561 hasConcept C12267149 @default.
- W2530382561 hasConcept C134306372 @default.
- W2530382561 hasConcept C153180895 @default.
- W2530382561 hasConcept C154945302 @default.
- W2530382561 hasConcept C160446489 @default.
- W2530382561 hasConcept C2781067378 @default.
- W2530382561 hasConcept C33923547 @default.
- W2530382561 hasConcept C41008148 @default.
- W2530382561 hasConcept C48921125 @default.
- W2530382561 hasConcept C74193536 @default.
- W2530382561 hasConcept C75866337 @default.
- W2530382561 hasConcept C90119067 @default.
- W2530382561 hasConceptScore W2530382561C114614502 @default.
- W2530382561 hasConceptScore W2530382561C119857082 @default.
- W2530382561 hasConceptScore W2530382561C120068334 @default.
- W2530382561 hasConceptScore W2530382561C122280245 @default.
- W2530382561 hasConceptScore W2530382561C12267149 @default.
- W2530382561 hasConceptScore W2530382561C134306372 @default.
- W2530382561 hasConceptScore W2530382561C153180895 @default.
- W2530382561 hasConceptScore W2530382561C154945302 @default.
- W2530382561 hasConceptScore W2530382561C160446489 @default.
- W2530382561 hasConceptScore W2530382561C2781067378 @default.
- W2530382561 hasConceptScore W2530382561C33923547 @default.
- W2530382561 hasConceptScore W2530382561C41008148 @default.
- W2530382561 hasConceptScore W2530382561C48921125 @default.
- W2530382561 hasConceptScore W2530382561C74193536 @default.
- W2530382561 hasConceptScore W2530382561C75866337 @default.
- W2530382561 hasConceptScore W2530382561C90119067 @default.
- W2530382561 hasIssue "10" @default.
- W2530382561 hasLocation W25303825611 @default.
- W2530382561 hasLocation W25303825612 @default.
- W2530382561 hasLocation W25303825613 @default.