Matches in SemOpenAlex for { <https://semopenalex.org/work/W2530727159> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2530727159 abstract "AdaBoost is one of the most important recent developments in the classification methodology. AdaBoost works by repeatedly applying the base learning algorithm to the re-sampled versions of the training data to produce a collection of hypothesis functions which are finally combined via a weighted linear vote to form the final decision. Under mild assumptions, AdaBoost can lead to a classification algorithm with arbitrary accuracy. By pursuing a large norm-1 margin, AdaBoost can also significantly improve the generalization performances in many cases. However, recent studies showed that AdaBoost performs poorly on noisy data. In this work we present several new regularized boosting algorithms to mitigate the overfitting problem of AdaBoost. Our regularized algorithms are directly motivated by the connection between AdaBoost and linear programming. They implement an intuitive idea of controlling the distribution skewness in the learning process to prevent outlier samples from spoiling decision boundaries by introducing a smooth convex penalty function into the objective function of the minimax problem. Large-scale experiments based on UCI (University of California, Irvine), DELVE (Data for Evaluating Learning in Valid Experiments), STATLOG and USPS (US Postal Service) datasets are conducted. For the UCI, DELVE and STATLOG datasets, we show that our regularized boosting algorithms can achieve at least the same or much better performance than other regularized AdaBoost algorithms. For the USPS datasets, we show that our algorithms are very robust against class mislabeling and feature noise. We also extend our analyses to multiclass problems. Particularly, two multiclass AdaBoost algorithms: AdaBoost.MO and AdaBoost.ECC are investigated. We prove that both algorithms can be categorized into the family of stagewise functional gradient descent algorithms. Based on the different margin definitions, two new regularized multiclass AdaBoost algorithms are also proposed. We also consider landmine detection via forward-looking ground penetrating radar (FLGPR) by using time-frequency analysis and AdaBoost. Our task is to detect the presence of landmines in radar images. We formulate it as an object recognition problem. Two main challenges are: (1) how to extract intricate structures of target signals from radar imageries and (2) how to adapt a classifier to surrounding environments through learning. (Abstract shortened by UMI.)" @default.
- W2530727159 created "2016-10-21" @default.
- W2530727159 creator A5039662308 @default.
- W2530727159 creator A5052883326 @default.
- W2530727159 date "2004-01-01" @default.
- W2530727159 modified "2023-09-23" @default.
- W2530727159 title "Robust ensemble classifiers and their applications to landmine detection" @default.
- W2530727159 hasPublicationYear "2004" @default.
- W2530727159 type Work @default.
- W2530727159 sameAs 2530727159 @default.
- W2530727159 citedByCount "0" @default.
- W2530727159 crossrefType "journal-article" @default.
- W2530727159 hasAuthorship W2530727159A5039662308 @default.
- W2530727159 hasAuthorship W2530727159A5052883326 @default.
- W2530727159 hasConcept C11413529 @default.
- W2530727159 hasConcept C119857082 @default.
- W2530727159 hasConcept C141404830 @default.
- W2530727159 hasConcept C153180895 @default.
- W2530727159 hasConcept C154945302 @default.
- W2530727159 hasConcept C22019652 @default.
- W2530727159 hasConcept C41008148 @default.
- W2530727159 hasConcept C45942800 @default.
- W2530727159 hasConcept C46686674 @default.
- W2530727159 hasConcept C50644808 @default.
- W2530727159 hasConcept C79337645 @default.
- W2530727159 hasConcept C95623464 @default.
- W2530727159 hasConceptScore W2530727159C11413529 @default.
- W2530727159 hasConceptScore W2530727159C119857082 @default.
- W2530727159 hasConceptScore W2530727159C141404830 @default.
- W2530727159 hasConceptScore W2530727159C153180895 @default.
- W2530727159 hasConceptScore W2530727159C154945302 @default.
- W2530727159 hasConceptScore W2530727159C22019652 @default.
- W2530727159 hasConceptScore W2530727159C41008148 @default.
- W2530727159 hasConceptScore W2530727159C45942800 @default.
- W2530727159 hasConceptScore W2530727159C46686674 @default.
- W2530727159 hasConceptScore W2530727159C50644808 @default.
- W2530727159 hasConceptScore W2530727159C79337645 @default.
- W2530727159 hasConceptScore W2530727159C95623464 @default.
- W2530727159 hasLocation W25307271591 @default.
- W2530727159 hasOpenAccess W2530727159 @default.
- W2530727159 hasPrimaryLocation W25307271591 @default.
- W2530727159 hasRelatedWork W1431421850 @default.
- W2530727159 hasRelatedWork W1563626982 @default.
- W2530727159 hasRelatedWork W1588401315 @default.
- W2530727159 hasRelatedWork W1997731668 @default.
- W2530727159 hasRelatedWork W2059213632 @default.
- W2530727159 hasRelatedWork W2065041047 @default.
- W2530727159 hasRelatedWork W2079899298 @default.
- W2530727159 hasRelatedWork W2100625254 @default.
- W2530727159 hasRelatedWork W2293512291 @default.
- W2530727159 hasRelatedWork W2383436368 @default.
- W2530727159 hasRelatedWork W2498270376 @default.
- W2530727159 hasRelatedWork W2587077738 @default.
- W2530727159 hasRelatedWork W2783489654 @default.
- W2530727159 hasRelatedWork W2806033455 @default.
- W2530727159 hasRelatedWork W28154616 @default.
- W2530727159 hasRelatedWork W2898821662 @default.
- W2530727159 hasRelatedWork W2951434536 @default.
- W2530727159 hasRelatedWork W2980600608 @default.
- W2530727159 hasRelatedWork W3010114384 @default.
- W2530727159 hasRelatedWork W3173320634 @default.
- W2530727159 isParatext "false" @default.
- W2530727159 isRetracted "false" @default.
- W2530727159 magId "2530727159" @default.
- W2530727159 workType "article" @default.