Matches in SemOpenAlex for { <https://semopenalex.org/work/W2531004611> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2531004611 abstract "The symplectic vortex equations admit a variational description as global minimum of the Yang-Mills-Higgs functional. We study its negative gradient flow on holomorphic pairs $(A,u)$ where $A$ is a connection on a principal $G$-bundle $P$ over a closed Riemann surface $Sigma$ and $u: P rightarrow X$ is an equivariant map into a Kahler Hamiltonian $G$-manifold. The connection $A$ induces a holomorphic structure on the Kahler fibration $Ptimes_G X$ and we require that $u$ descends to a holomorphic section of this fibration. We prove a Lojasiewicz type gradient inequality and show uniform convergence of the negative gradient flow in the $W^{1,2}times W^{2,2}$-topology when $X$ is equivariantly convex at infinity with proper moment map, $X$ is holomorphically aspherical and its Kahler metric is analytic. As applications we establish several results inspired by finite dimensional GIT: First, we prove a certain uniqueness property for the critical points of the Yang-Mills-Higgs functional which is the analogue of the Ness uniqueness theorem. Second, we extend Mundet's Kobayashi-Hitchin correspondence to the polystable and semistable case. The arguments for the polystable case lead to a new proof in the stable case. Third, in proving the semistable correspondence, we establish the moment-weight inequality for the vortex equation and prove the analogue of the Kempf existence and uniqueness theorem." @default.
- W2531004611 created "2016-10-21" @default.
- W2531004611 creator A5023000201 @default.
- W2531004611 date "2016-10-07" @default.
- W2531004611 modified "2023-09-27" @default.
- W2531004611 title "Convergence of the Yang-Mills-Higgs flow on gauged holomorphic maps and applications" @default.
- W2531004611 cites W1484981605 @default.
- W2531004611 cites W1488877410 @default.
- W2531004611 cites W1492844808 @default.
- W2531004611 cites W1502762726 @default.
- W2531004611 cites W1504483056 @default.
- W2531004611 cites W1533889494 @default.
- W2531004611 cites W1571072992 @default.
- W2531004611 cites W1572341022 @default.
- W2531004611 cites W1607926288 @default.
- W2531004611 cites W1636341409 @default.
- W2531004611 cites W1765256412 @default.
- W2531004611 cites W180261308 @default.
- W2531004611 cites W1918709128 @default.
- W2531004611 cites W1985975771 @default.
- W2531004611 cites W2002191654 @default.
- W2531004611 cites W2026853928 @default.
- W2531004611 cites W2034958095 @default.
- W2531004611 cites W2051389858 @default.
- W2531004611 cites W2059190197 @default.
- W2531004611 cites W2076559073 @default.
- W2531004611 cites W2081761843 @default.
- W2531004611 cites W2096835075 @default.
- W2531004611 cites W2116163539 @default.
- W2531004611 cites W2149257300 @default.
- W2531004611 cites W2177166377 @default.
- W2531004611 cites W2329975073 @default.
- W2531004611 cites W3151048661 @default.
- W2531004611 hasPublicationYear "2016" @default.
- W2531004611 type Work @default.
- W2531004611 sameAs 2531004611 @default.
- W2531004611 citedByCount "0" @default.
- W2531004611 crossrefType "posted-content" @default.
- W2531004611 hasAuthorship W2531004611A5023000201 @default.
- W2531004611 hasConcept C13355873 @default.
- W2531004611 hasConcept C134306372 @default.
- W2531004611 hasConcept C167879884 @default.
- W2531004611 hasConcept C168619227 @default.
- W2531004611 hasConcept C18556879 @default.
- W2531004611 hasConcept C202444582 @default.
- W2531004611 hasConcept C204575570 @default.
- W2531004611 hasConcept C2524010 @default.
- W2531004611 hasConcept C2777021972 @default.
- W2531004611 hasConcept C33923547 @default.
- W2531004611 hasConcept C40265840 @default.
- W2531004611 hasConcept C54486226 @default.
- W2531004611 hasConcept C5961521 @default.
- W2531004611 hasConcept C6270764 @default.
- W2531004611 hasConceptScore W2531004611C13355873 @default.
- W2531004611 hasConceptScore W2531004611C134306372 @default.
- W2531004611 hasConceptScore W2531004611C167879884 @default.
- W2531004611 hasConceptScore W2531004611C168619227 @default.
- W2531004611 hasConceptScore W2531004611C18556879 @default.
- W2531004611 hasConceptScore W2531004611C202444582 @default.
- W2531004611 hasConceptScore W2531004611C204575570 @default.
- W2531004611 hasConceptScore W2531004611C2524010 @default.
- W2531004611 hasConceptScore W2531004611C2777021972 @default.
- W2531004611 hasConceptScore W2531004611C33923547 @default.
- W2531004611 hasConceptScore W2531004611C40265840 @default.
- W2531004611 hasConceptScore W2531004611C54486226 @default.
- W2531004611 hasConceptScore W2531004611C5961521 @default.
- W2531004611 hasConceptScore W2531004611C6270764 @default.
- W2531004611 hasLocation W25310046111 @default.
- W2531004611 hasOpenAccess W2531004611 @default.
- W2531004611 hasPrimaryLocation W25310046111 @default.
- W2531004611 hasRelatedWork W1527510866 @default.
- W2531004611 hasRelatedWork W1785841641 @default.
- W2531004611 hasRelatedWork W2008178408 @default.
- W2531004611 hasRelatedWork W2122750816 @default.
- W2531004611 hasRelatedWork W2489077708 @default.
- W2531004611 hasRelatedWork W2908726216 @default.
- W2531004611 hasRelatedWork W2950303061 @default.
- W2531004611 hasRelatedWork W2950430967 @default.
- W2531004611 hasRelatedWork W2962742786 @default.
- W2531004611 hasRelatedWork W2962927302 @default.
- W2531004611 hasRelatedWork W2963702242 @default.
- W2531004611 hasRelatedWork W2963824478 @default.
- W2531004611 hasRelatedWork W2964020092 @default.
- W2531004611 hasRelatedWork W2964186807 @default.
- W2531004611 hasRelatedWork W3028635198 @default.
- W2531004611 hasRelatedWork W3103064583 @default.
- W2531004611 hasRelatedWork W3210581917 @default.
- W2531004611 hasRelatedWork W4817423 @default.
- W2531004611 hasRelatedWork W583388589 @default.
- W2531004611 hasRelatedWork W2809733083 @default.
- W2531004611 isParatext "false" @default.
- W2531004611 isRetracted "false" @default.
- W2531004611 magId "2531004611" @default.
- W2531004611 workType "article" @default.