Matches in SemOpenAlex for { <https://semopenalex.org/work/W2531621808> ?p ?o ?g. }
- W2531621808 endingPage "149" @default.
- W2531621808 startingPage "100" @default.
- W2531621808 abstract "This chapter is a brief introduction to the basic multimodal logic BML, interpreted as the simplest natural temporal logic for reasoning about transition systems. Indeed, transition systems are nothing but Kripke frames and interpreted transition systems are simply Kripke models, so a standard Kripke semantics is provided for a multimodal language with modal operators □ a and ◊ a , associated with each transition relation R a . These bear natural meaning in interpreted transition systems, stating what must be true in all /respectively, what may be true at some/ R a -successors of the current state. In order to emphasise these readings of the modal operators, we will use a notation that is unusual for modal logic, but is more suitable in the context of temporal logics: AX a (read as for all paths starting from the current state, at the next state ) and EX a ( for some path starting from the current state, at the next state ). Thus, BML is the minimal natural logical language to specify local properties of transition systems. Since the chapter is written from the primary perspective of transition systems, rather than from modal logic perspective, we have put an emphasis on certain topics such as expressiveness, bisimulation, model checking, the finite model property and deciding satisfiability, while other fundamental topics in modal logic – such as deductive systems and proof theory, model theory, correspondence theory, algebraic semantics and duality theory – are almost left untouched here. Of all deductive systems developed for modal logics we only mention the axiomatic system for BML here and present a version of the tableaubased method for it in Chapter 13; for the rest we only provide basic references in the bibliographic notes. This chapter can also be viewed as a stepping stone towards the more expressive and interesting temporal logics that are presented further. Structure of this chapter. Section 5.1 presents the syntax and semantics for BML. The relational translation from BML into first-order logic (FO) is also presented emphasising the fact that BML can be viewed as a fragment of classical first-order predicate logic. Section 5.2 presents some techniques for renaming and transformation of BML formulae to equisatisfiable ones in certain normal form of modal depth two." @default.
- W2531621808 created "2016-10-21" @default.
- W2531621808 creator A5060413318 @default.
- W2531621808 creator A5066665696 @default.
- W2531621808 creator A5087768042 @default.
- W2531621808 date "2016-10-16" @default.
- W2531621808 modified "2023-09-25" @default.
- W2531621808 title "Basic Modal Logics" @default.
- W2531621808 doi "https://doi.org/10.1017/cbo9781139236119.005" @default.
- W2531621808 hasPublicationYear "2016" @default.
- W2531621808 type Work @default.
- W2531621808 sameAs 2531621808 @default.
- W2531621808 citedByCount "0" @default.
- W2531621808 crossrefType "book-chapter" @default.
- W2531621808 hasAuthorship W2531621808A5060413318 @default.
- W2531621808 hasAuthorship W2531621808A5066665696 @default.
- W2531621808 hasAuthorship W2531621808A5087768042 @default.
- W2531621808 hasConcept C102993220 @default.
- W2531621808 hasConcept C11191006 @default.
- W2531621808 hasConcept C114092440 @default.
- W2531621808 hasConcept C118615104 @default.
- W2531621808 hasConcept C121332964 @default.
- W2531621808 hasConcept C135315306 @default.
- W2531621808 hasConcept C136119220 @default.
- W2531621808 hasConcept C160131679 @default.
- W2531621808 hasConcept C161913894 @default.
- W2531621808 hasConcept C165801399 @default.
- W2531621808 hasConcept C172385210 @default.
- W2531621808 hasConcept C173125200 @default.
- W2531621808 hasConcept C185592680 @default.
- W2531621808 hasConcept C188027245 @default.
- W2531621808 hasConcept C192609573 @default.
- W2531621808 hasConcept C202444582 @default.
- W2531621808 hasConcept C203659156 @default.
- W2531621808 hasConcept C25016198 @default.
- W2531621808 hasConcept C27508121 @default.
- W2531621808 hasConcept C2777796570 @default.
- W2531621808 hasConcept C2779167558 @default.
- W2531621808 hasConcept C2780432614 @default.
- W2531621808 hasConcept C33923547 @default.
- W2531621808 hasConcept C41008148 @default.
- W2531621808 hasConcept C4777664 @default.
- W2531621808 hasConcept C62520636 @default.
- W2531621808 hasConcept C71139939 @default.
- W2531621808 hasConcept C78344899 @default.
- W2531621808 hasConcept C80444323 @default.
- W2531621808 hasConceptScore W2531621808C102993220 @default.
- W2531621808 hasConceptScore W2531621808C11191006 @default.
- W2531621808 hasConceptScore W2531621808C114092440 @default.
- W2531621808 hasConceptScore W2531621808C118615104 @default.
- W2531621808 hasConceptScore W2531621808C121332964 @default.
- W2531621808 hasConceptScore W2531621808C135315306 @default.
- W2531621808 hasConceptScore W2531621808C136119220 @default.
- W2531621808 hasConceptScore W2531621808C160131679 @default.
- W2531621808 hasConceptScore W2531621808C161913894 @default.
- W2531621808 hasConceptScore W2531621808C165801399 @default.
- W2531621808 hasConceptScore W2531621808C172385210 @default.
- W2531621808 hasConceptScore W2531621808C173125200 @default.
- W2531621808 hasConceptScore W2531621808C185592680 @default.
- W2531621808 hasConceptScore W2531621808C188027245 @default.
- W2531621808 hasConceptScore W2531621808C192609573 @default.
- W2531621808 hasConceptScore W2531621808C202444582 @default.
- W2531621808 hasConceptScore W2531621808C203659156 @default.
- W2531621808 hasConceptScore W2531621808C25016198 @default.
- W2531621808 hasConceptScore W2531621808C27508121 @default.
- W2531621808 hasConceptScore W2531621808C2777796570 @default.
- W2531621808 hasConceptScore W2531621808C2779167558 @default.
- W2531621808 hasConceptScore W2531621808C2780432614 @default.
- W2531621808 hasConceptScore W2531621808C33923547 @default.
- W2531621808 hasConceptScore W2531621808C41008148 @default.
- W2531621808 hasConceptScore W2531621808C4777664 @default.
- W2531621808 hasConceptScore W2531621808C62520636 @default.
- W2531621808 hasConceptScore W2531621808C71139939 @default.
- W2531621808 hasConceptScore W2531621808C78344899 @default.
- W2531621808 hasConceptScore W2531621808C80444323 @default.
- W2531621808 hasLocation W25316218081 @default.
- W2531621808 hasOpenAccess W2531621808 @default.
- W2531621808 hasPrimaryLocation W25316218081 @default.
- W2531621808 hasRelatedWork W1495360081 @default.
- W2531621808 hasRelatedWork W1507873625 @default.
- W2531621808 hasRelatedWork W1519854400 @default.
- W2531621808 hasRelatedWork W1562406943 @default.
- W2531621808 hasRelatedWork W1562991031 @default.
- W2531621808 hasRelatedWork W1649425559 @default.
- W2531621808 hasRelatedWork W1689987508 @default.
- W2531621808 hasRelatedWork W1692087081 @default.
- W2531621808 hasRelatedWork W1920001170 @default.
- W2531621808 hasRelatedWork W1981707252 @default.
- W2531621808 hasRelatedWork W1983240156 @default.
- W2531621808 hasRelatedWork W2229794571 @default.
- W2531621808 hasRelatedWork W2268902502 @default.
- W2531621808 hasRelatedWork W2404368132 @default.
- W2531621808 hasRelatedWork W2795943823 @default.
- W2531621808 hasRelatedWork W2884150062 @default.
- W2531621808 hasRelatedWork W2963628981 @default.
- W2531621808 hasRelatedWork W3081776191 @default.
- W2531621808 hasRelatedWork W352475549 @default.
- W2531621808 hasRelatedWork W88769070 @default.