Matches in SemOpenAlex for { <https://semopenalex.org/work/W2531640182> ?p ?o ?g. }
- W2531640182 endingPage "e2849" @default.
- W2531640182 startingPage "e2849" @default.
- W2531640182 abstract "Species distribution models (SDMs) have become an essential tool in ecology, biogeography, evolution and, more recently, in conservation biology. How to generalize species distributions in large undersampled areas, especially with few samples, is a fundamental issue of SDMs. In order to explore this issue, we used the best available presence records for the Hooded Crane ( Grus monacha , n = 33), White-naped Crane ( Grus vipio , n = 40), and Black-necked Crane ( Grus nigricollis , n = 75) in China as three case studies, employing four powerful and commonly used machine learning algorithms to map the breeding distributions of the three species: TreeNet (Stochastic Gradient Boosting, Boosted Regression Tree Model), Random Forest, CART (Classification and Regression Tree) and Maxent (Maximum Entropy Models). In addition, we developed an ensemble forecast by averaging predicted probability of the above four models results. Commonly used model performance metrics (Area under ROC (AUC) and true skill statistic (TSS)) were employed to evaluate model accuracy. The latest satellite tracking data and compiled literature data were used as two independent testing datasets to confront model predictions. We found Random Forest demonstrated the best performance for the most assessment method, provided a better model fit to the testing data, and achieved better species range maps for each crane species in undersampled areas. Random Forest has been generally available for more than 20 years and has been known to perform extremely well in ecological predictions. However, while increasingly on the rise, its potential is still widely underused in conservation, (spatial) ecological applications and for inference. Our results show that it informs ecological and biogeographical theories as well as being suitable for conservation applications, specifically when the study area is undersampled. This method helps to save model-selection time and effort, and allows robust and rapid assessments and decisions for efficient conservation." @default.
- W2531640182 created "2016-10-21" @default.
- W2531640182 creator A5033406507 @default.
- W2531640182 creator A5050459632 @default.
- W2531640182 creator A5051492136 @default.
- W2531640182 creator A5070097821 @default.
- W2531640182 creator A5078728097 @default.
- W2531640182 date "2017-01-12" @default.
- W2531640182 modified "2023-10-16" @default.
- W2531640182 title "Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence" @default.
- W2531640182 cites W1541774929 @default.
- W2531640182 cites W1549142192 @default.
- W2531640182 cites W1552647955 @default.
- W2531640182 cites W1710732412 @default.
- W2531640182 cites W1964217587 @default.
- W2531640182 cites W1974469679 @default.
- W2531640182 cites W2009313389 @default.
- W2531640182 cites W2011457049 @default.
- W2531640182 cites W2011849275 @default.
- W2531640182 cites W2014787601 @default.
- W2531640182 cites W2033686454 @default.
- W2531640182 cites W2036681740 @default.
- W2531640182 cites W2042783301 @default.
- W2531640182 cites W2046669039 @default.
- W2531640182 cites W2055764609 @default.
- W2531640182 cites W2056868695 @default.
- W2531640182 cites W2070493638 @default.
- W2531640182 cites W2077285872 @default.
- W2531640182 cites W2098827790 @default.
- W2531640182 cites W2111796869 @default.
- W2531640182 cites W2111954076 @default.
- W2531640182 cites W2112315008 @default.
- W2531640182 cites W2113965979 @default.
- W2531640182 cites W2115268776 @default.
- W2531640182 cites W2120160157 @default.
- W2531640182 cites W2123337039 @default.
- W2531640182 cites W2125118617 @default.
- W2531640182 cites W2127367934 @default.
- W2531640182 cites W2130695471 @default.
- W2531640182 cites W2131687730 @default.
- W2531640182 cites W2138763961 @default.
- W2531640182 cites W2139086914 @default.
- W2531640182 cites W2139416101 @default.
- W2531640182 cites W2157214554 @default.
- W2531640182 cites W2161548576 @default.
- W2531640182 cites W2167867107 @default.
- W2531640182 cites W2170057725 @default.
- W2531640182 cites W2254443273 @default.
- W2531640182 cites W2322716337 @default.
- W2531640182 cites W2485209715 @default.
- W2531640182 cites W2911964244 @default.
- W2531640182 cites W3145388398 @default.
- W2531640182 cites W568007982 @default.
- W2531640182 cites W64004560 @default.
- W2531640182 cites W70281203 @default.
- W2531640182 doi "https://doi.org/10.7717/peerj.2849" @default.
- W2531640182 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5237372" @default.
- W2531640182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28097060" @default.
- W2531640182 hasPublicationYear "2017" @default.
- W2531640182 type Work @default.
- W2531640182 sameAs 2531640182 @default.
- W2531640182 citedByCount "155" @default.
- W2531640182 countsByYear W25316401822017 @default.
- W2531640182 countsByYear W25316401822018 @default.
- W2531640182 countsByYear W25316401822019 @default.
- W2531640182 countsByYear W25316401822020 @default.
- W2531640182 countsByYear W25316401822021 @default.
- W2531640182 countsByYear W25316401822022 @default.
- W2531640182 countsByYear W25316401822023 @default.
- W2531640182 crossrefType "journal-article" @default.
- W2531640182 hasAuthorship W2531640182A5033406507 @default.
- W2531640182 hasAuthorship W2531640182A5050459632 @default.
- W2531640182 hasAuthorship W2531640182A5051492136 @default.
- W2531640182 hasAuthorship W2531640182A5070097821 @default.
- W2531640182 hasAuthorship W2531640182A5078728097 @default.
- W2531640182 hasBestOaLocation W25316401821 @default.
- W2531640182 hasConcept C102715595 @default.
- W2531640182 hasConcept C103215972 @default.
- W2531640182 hasConcept C105795698 @default.
- W2531640182 hasConcept C119857082 @default.
- W2531640182 hasConcept C119898033 @default.
- W2531640182 hasConcept C132124917 @default.
- W2531640182 hasConcept C169258074 @default.
- W2531640182 hasConcept C185933670 @default.
- W2531640182 hasConcept C18903297 @default.
- W2531640182 hasConcept C2777919844 @default.
- W2531640182 hasConcept C33923547 @default.
- W2531640182 hasConcept C41008148 @default.
- W2531640182 hasConcept C86803240 @default.
- W2531640182 hasConcept C89128539 @default.
- W2531640182 hasConceptScore W2531640182C102715595 @default.
- W2531640182 hasConceptScore W2531640182C103215972 @default.
- W2531640182 hasConceptScore W2531640182C105795698 @default.
- W2531640182 hasConceptScore W2531640182C119857082 @default.
- W2531640182 hasConceptScore W2531640182C119898033 @default.
- W2531640182 hasConceptScore W2531640182C132124917 @default.
- W2531640182 hasConceptScore W2531640182C169258074 @default.
- W2531640182 hasConceptScore W2531640182C185933670 @default.