Matches in SemOpenAlex for { <https://semopenalex.org/work/W2531648894> ?p ?o ?g. }
- W2531648894 abstract "The automatic determination of emotional state from multimedia content is an inherently challenging problem with a broad range of applications including biomedical diagnostics, multimedia retrieval, and human computer interfaces. The Audio Video Emotion Challenge (AVEC) 2016 provides a well-defined framework for developing and rigorously evaluating innovative approaches for estimating the arousal and valence states of emotion as a function of time. It presents the opportunity for investigating multimodal solutions that include audio, video, and physiological sensor signals. This paper provides an overview of our AVEC Emotion Challenge system, which uses multi-feature learning and fusion across all available modalities. It includes a number of technical contributions, including the development of novel high- and low-level features for modeling emotion in the audio, video, and physiological channels. Low-level features include modeling arousal in audio with minimal prosodic-based descriptors. High-level features are derived from supervised and unsupervised machine learning approaches based on sparse coding and deep learning. Finally, a state space estimation approach is applied for score fusion that demonstrates the importance of exploiting the time-series nature of the arousal and valence states. The resulting system outperforms the baseline systems [10] on the test evaluation set with an achieved Concordant Correlation Coefficient (CCC) for arousal of 0.770 vs 0.702 (baseline) and for valence of 0.687 vs 0.638. Future work will focus on exploiting the time-varying nature of individual channels in the multi-modal framework." @default.
- W2531648894 created "2016-10-21" @default.
- W2531648894 creator A5006727075 @default.
- W2531648894 creator A5008831111 @default.
- W2531648894 creator A5012323997 @default.
- W2531648894 creator A5026993630 @default.
- W2531648894 creator A5030332766 @default.
- W2531648894 creator A5045340838 @default.
- W2531648894 creator A5061064027 @default.
- W2531648894 date "2016-10-16" @default.
- W2531648894 modified "2023-10-09" @default.
- W2531648894 title "Multi-Modal Audio, Video and Physiological Sensor Learning for Continuous Emotion Prediction" @default.
- W2531648894 cites W1531532259 @default.
- W2531648894 cites W1964757081 @default.
- W2531648894 cites W1976235033 @default.
- W2531648894 cites W1990778070 @default.
- W2531648894 cites W2005418748 @default.
- W2531648894 cites W2005876975 @default.
- W2531648894 cites W2021913835 @default.
- W2531648894 cites W2037441721 @default.
- W2531648894 cites W2041823554 @default.
- W2531648894 cites W2045528981 @default.
- W2531648894 cites W2062632672 @default.
- W2531648894 cites W2076948628 @default.
- W2531648894 cites W2081835714 @default.
- W2531648894 cites W2104074072 @default.
- W2531648894 cites W2105464873 @default.
- W2531648894 cites W2150409012 @default.
- W2531648894 cites W2195207531 @default.
- W2531648894 cites W2247869531 @default.
- W2531648894 cites W2277498883 @default.
- W2531648894 cites W2281407413 @default.
- W2531648894 cites W2400979883 @default.
- W2531648894 cites W87274615 @default.
- W2531648894 doi "https://doi.org/10.1145/2988257.2988264" @default.
- W2531648894 hasPublicationYear "2016" @default.
- W2531648894 type Work @default.
- W2531648894 sameAs 2531648894 @default.
- W2531648894 citedByCount "78" @default.
- W2531648894 countsByYear W25316488942017 @default.
- W2531648894 countsByYear W25316488942018 @default.
- W2531648894 countsByYear W25316488942019 @default.
- W2531648894 countsByYear W25316488942020 @default.
- W2531648894 countsByYear W25316488942021 @default.
- W2531648894 countsByYear W25316488942022 @default.
- W2531648894 countsByYear W25316488942023 @default.
- W2531648894 crossrefType "proceedings-article" @default.
- W2531648894 hasAuthorship W2531648894A5006727075 @default.
- W2531648894 hasAuthorship W2531648894A5008831111 @default.
- W2531648894 hasAuthorship W2531648894A5012323997 @default.
- W2531648894 hasAuthorship W2531648894A5026993630 @default.
- W2531648894 hasAuthorship W2531648894A5030332766 @default.
- W2531648894 hasAuthorship W2531648894A5045340838 @default.
- W2531648894 hasAuthorship W2531648894A5061064027 @default.
- W2531648894 hasConcept C119857082 @default.
- W2531648894 hasConcept C121332964 @default.
- W2531648894 hasConcept C144024400 @default.
- W2531648894 hasConcept C154945302 @default.
- W2531648894 hasConcept C168900304 @default.
- W2531648894 hasConcept C169760540 @default.
- W2531648894 hasConcept C2777438025 @default.
- W2531648894 hasConcept C2779903281 @default.
- W2531648894 hasConcept C28490314 @default.
- W2531648894 hasConcept C36289849 @default.
- W2531648894 hasConcept C36951298 @default.
- W2531648894 hasConcept C41008148 @default.
- W2531648894 hasConcept C62520636 @default.
- W2531648894 hasConcept C6438553 @default.
- W2531648894 hasConcept C86803240 @default.
- W2531648894 hasConceptScore W2531648894C119857082 @default.
- W2531648894 hasConceptScore W2531648894C121332964 @default.
- W2531648894 hasConceptScore W2531648894C144024400 @default.
- W2531648894 hasConceptScore W2531648894C154945302 @default.
- W2531648894 hasConceptScore W2531648894C168900304 @default.
- W2531648894 hasConceptScore W2531648894C169760540 @default.
- W2531648894 hasConceptScore W2531648894C2777438025 @default.
- W2531648894 hasConceptScore W2531648894C2779903281 @default.
- W2531648894 hasConceptScore W2531648894C28490314 @default.
- W2531648894 hasConceptScore W2531648894C36289849 @default.
- W2531648894 hasConceptScore W2531648894C36951298 @default.
- W2531648894 hasConceptScore W2531648894C41008148 @default.
- W2531648894 hasConceptScore W2531648894C62520636 @default.
- W2531648894 hasConceptScore W2531648894C6438553 @default.
- W2531648894 hasConceptScore W2531648894C86803240 @default.
- W2531648894 hasLocation W25316488941 @default.
- W2531648894 hasOpenAccess W2531648894 @default.
- W2531648894 hasPrimaryLocation W25316488941 @default.
- W2531648894 hasRelatedWork W1544055438 @default.
- W2531648894 hasRelatedWork W1987182177 @default.
- W2531648894 hasRelatedWork W2029072726 @default.
- W2531648894 hasRelatedWork W2085024878 @default.
- W2531648894 hasRelatedWork W2087245461 @default.
- W2531648894 hasRelatedWork W2736893848 @default.
- W2531648894 hasRelatedWork W3003450285 @default.
- W2531648894 hasRelatedWork W4310841718 @default.
- W2531648894 hasRelatedWork W4361008003 @default.
- W2531648894 hasRelatedWork W91913183 @default.
- W2531648894 isParatext "false" @default.
- W2531648894 isRetracted "false" @default.
- W2531648894 magId "2531648894" @default.