Matches in SemOpenAlex for { <https://semopenalex.org/work/W2531661523> ?p ?o ?g. }
- W2531661523 abstract "This paper presents adaptive subspace-based inverse projections via division into multiple sub-problems (ASIP-DIMSs) for missing image data restoration. In the proposed method, a target problem for estimating missing image data is divided into multiple sub-problems, and each sub-problem is iteratively solved with the constraints of other known image data. By projection into a subspace model of image patches, the solution of each sub-problem is calculated, where we call this procedure subspace-based inverse projection for simplicity. The proposed method can use higher dimensional subspaces for finding unique solutions in each sub-problem, and successful restoration becomes feasible, since a high level of image representation performance can be preserved. This is the biggest contribution of this paper. Furthermore, the proposed method generates several subspaces from known training examples and enables derivation of a new criterion in the above framework to adaptively select the optimal subspace for each target patch. In this way, the proposed method realizes missing image data restoration using ASIP-DIMS. Since our method can estimate any kind of missing image data, its potential in two image restoration tasks, image inpainting and super-resolution, based on several methods for multivariate analysis is also shown in this paper." @default.
- W2531661523 created "2016-10-21" @default.
- W2531661523 creator A5009032240 @default.
- W2531661523 creator A5063903016 @default.
- W2531661523 date "2016-12-01" @default.
- W2531661523 modified "2023-09-27" @default.
- W2531661523 title "Adaptive Subspace-Based Inverse Projections via Division Into Multiple Sub-Problems for Missing Image Data Restoration" @default.
- W2531661523 cites W123426918 @default.
- W2531661523 cites W1539200859 @default.
- W2531661523 cites W1562968274 @default.
- W2531661523 cites W1587280060 @default.
- W2531661523 cites W1950038212 @default.
- W2531661523 cites W1976416062 @default.
- W2531661523 cites W1983918717 @default.
- W2531661523 cites W1999821839 @default.
- W2531661523 cites W2011952414 @default.
- W2531661523 cites W2016331656 @default.
- W2531661523 cites W2017906503 @default.
- W2531661523 cites W2029411311 @default.
- W2531661523 cites W2030480732 @default.
- W2531661523 cites W2032024719 @default.
- W2531661523 cites W2047422818 @default.
- W2531661523 cites W2062820291 @default.
- W2531661523 cites W2064309976 @default.
- W2531661523 cites W2067042811 @default.
- W2531661523 cites W2071080980 @default.
- W2531661523 cites W2072285922 @default.
- W2531661523 cites W2075139865 @default.
- W2531661523 cites W2078790656 @default.
- W2531661523 cites W2082114499 @default.
- W2531661523 cites W2085518012 @default.
- W2531661523 cites W2085573253 @default.
- W2531661523 cites W2085692415 @default.
- W2531661523 cites W2088032561 @default.
- W2531661523 cites W2088254198 @default.
- W2531661523 cites W2091449379 @default.
- W2531661523 cites W2093422746 @default.
- W2531661523 cites W2096461046 @default.
- W2531661523 cites W2097074225 @default.
- W2531661523 cites W2099600804 @default.
- W2531661523 cites W2100415658 @default.
- W2531661523 cites W2102380305 @default.
- W2531661523 cites W2103824707 @default.
- W2531661523 cites W2103871101 @default.
- W2531661523 cites W2104876002 @default.
- W2531661523 cites W2105038642 @default.
- W2531661523 cites W2107173102 @default.
- W2531661523 cites W2107358240 @default.
- W2531661523 cites W2108454251 @default.
- W2531661523 cites W2109151212 @default.
- W2531661523 cites W2114122776 @default.
- W2531661523 cites W2114398647 @default.
- W2531661523 cites W2116013899 @default.
- W2531661523 cites W2116148865 @default.
- W2531661523 cites W2121058967 @default.
- W2531661523 cites W2125859270 @default.
- W2531661523 cites W2130638881 @default.
- W2531661523 cites W2131024476 @default.
- W2531661523 cites W2132834770 @default.
- W2531661523 cites W2133396101 @default.
- W2531661523 cites W2133665775 @default.
- W2531661523 cites W2137921214 @default.
- W2531661523 cites W2140865211 @default.
- W2531661523 cites W2141631520 @default.
- W2531661523 cites W2144245917 @default.
- W2531661523 cites W2146885210 @default.
- W2531661523 cites W2149117060 @default.
- W2531661523 cites W2152417614 @default.
- W2531661523 cites W2153663612 @default.
- W2531661523 cites W2157494358 @default.
- W2531661523 cites W2160547390 @default.
- W2531661523 cites W2162449045 @default.
- W2531661523 cites W2163341393 @default.
- W2531661523 cites W2169945149 @default.
- W2531661523 cites W2292976057 @default.
- W2531661523 cites W2295936755 @default.
- W2531661523 cites W2409268103 @default.
- W2531661523 cites W2534320940 @default.
- W2531661523 cites W2140257560 @default.
- W2531661523 doi "https://doi.org/10.1109/tip.2016.2616286" @default.
- W2531661523 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27740483" @default.
- W2531661523 hasPublicationYear "2016" @default.
- W2531661523 type Work @default.
- W2531661523 sameAs 2531661523 @default.
- W2531661523 citedByCount "5" @default.
- W2531661523 countsByYear W25316615232017 @default.
- W2531661523 countsByYear W25316615232018 @default.
- W2531661523 countsByYear W25316615232019 @default.
- W2531661523 countsByYear W25316615232020 @default.
- W2531661523 crossrefType "journal-article" @default.
- W2531661523 hasAuthorship W2531661523A5009032240 @default.
- W2531661523 hasAuthorship W2531661523A5063903016 @default.
- W2531661523 hasBestOaLocation W25316615232 @default.
- W2531661523 hasConcept C106430172 @default.
- W2531661523 hasConcept C11413529 @default.
- W2531661523 hasConcept C115961682 @default.
- W2531661523 hasConcept C11727466 @default.
- W2531661523 hasConcept C119857082 @default.
- W2531661523 hasConcept C12362212 @default.
- W2531661523 hasConcept C141379421 @default.