Matches in SemOpenAlex for { <https://semopenalex.org/work/W2531806530> ?p ?o ?g. }
- W2531806530 endingPage "764" @default.
- W2531806530 startingPage "753" @default.
- W2531806530 abstract "Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets." @default.
- W2531806530 created "2016-10-21" @default.
- W2531806530 creator A5002944361 @default.
- W2531806530 creator A5004293803 @default.
- W2531806530 creator A5011994025 @default.
- W2531806530 creator A5027781565 @default.
- W2531806530 creator A5028621059 @default.
- W2531806530 creator A5035052973 @default.
- W2531806530 creator A5049055621 @default.
- W2531806530 creator A5089831745 @default.
- W2531806530 creator A5090786767 @default.
- W2531806530 date "2016-02-01" @default.
- W2531806530 modified "2023-10-16" @default.
- W2531806530 title "Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI" @default.
- W2531806530 cites W1502541876 @default.
- W2531806530 cites W1524094261 @default.
- W2531806530 cites W1584547534 @default.
- W2531806530 cites W1597605992 @default.
- W2531806530 cites W1641498739 @default.
- W2531806530 cites W1867620247 @default.
- W2531806530 cites W1879084407 @default.
- W2531806530 cites W1893588436 @default.
- W2531806530 cites W1897634172 @default.
- W2531806530 cites W1970449649 @default.
- W2531806530 cites W1974251455 @default.
- W2531806530 cites W1976999762 @default.
- W2531806530 cites W1982501107 @default.
- W2531806530 cites W1982755765 @default.
- W2531806530 cites W1995577320 @default.
- W2531806530 cites W1995642009 @default.
- W2531806530 cites W2004510158 @default.
- W2531806530 cites W2010501098 @default.
- W2531806530 cites W2029073757 @default.
- W2531806530 cites W2033809837 @default.
- W2531806530 cites W2034432063 @default.
- W2531806530 cites W2039661131 @default.
- W2531806530 cites W2053701690 @default.
- W2531806530 cites W2054863323 @default.
- W2531806530 cites W2056753605 @default.
- W2531806530 cites W2057318393 @default.
- W2531806530 cites W2057888948 @default.
- W2531806530 cites W2063552084 @default.
- W2531806530 cites W2080546786 @default.
- W2531806530 cites W2096616261 @default.
- W2531806530 cites W2106455035 @default.
- W2531806530 cites W2118830476 @default.
- W2531806530 cites W2120259577 @default.
- W2531806530 cites W2120715240 @default.
- W2531806530 cites W2120805724 @default.
- W2531806530 cites W2121947440 @default.
- W2531806530 cites W2123040649 @default.
- W2531806530 cites W2123498585 @default.
- W2531806530 cites W2125860481 @default.
- W2531806530 cites W2132914434 @default.
- W2531806530 cites W2136573752 @default.
- W2531806530 cites W2137344544 @default.
- W2531806530 cites W2140944029 @default.
- W2531806530 cites W2147759122 @default.
- W2531806530 cites W2148977460 @default.
- W2531806530 cites W2149901467 @default.
- W2531806530 cites W2152121803 @default.
- W2531806530 cites W2153428956 @default.
- W2531806530 cites W2154146062 @default.
- W2531806530 cites W2160382843 @default.
- W2531806530 cites W2161514909 @default.
- W2531806530 cites W2163641775 @default.
- W2531806530 cites W2165448374 @default.
- W2531806530 cites W2166244453 @default.
- W2531806530 cites W2168103112 @default.
- W2531806530 cites W2342967511 @default.
- W2531806530 cites W3099395583 @default.
- W2531806530 cites W3122703110 @default.
- W2531806530 cites W4293529598 @default.
- W2531806530 doi "https://doi.org/10.1016/j.nicl.2016.09.021" @default.
- W2531806530 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5079350" @default.
- W2531806530 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27812502" @default.
- W2531806530 hasPublicationYear "2016" @default.
- W2531806530 type Work @default.
- W2531806530 sameAs 2531806530 @default.
- W2531806530 citedByCount "59" @default.
- W2531806530 countsByYear W25318065302017 @default.
- W2531806530 countsByYear W25318065302018 @default.
- W2531806530 countsByYear W25318065302019 @default.
- W2531806530 countsByYear W25318065302020 @default.
- W2531806530 countsByYear W25318065302021 @default.
- W2531806530 countsByYear W25318065302022 @default.
- W2531806530 countsByYear W25318065302023 @default.
- W2531806530 crossrefType "journal-article" @default.
- W2531806530 hasAuthorship W2531806530A5002944361 @default.
- W2531806530 hasAuthorship W2531806530A5004293803 @default.
- W2531806530 hasAuthorship W2531806530A5011994025 @default.
- W2531806530 hasAuthorship W2531806530A5027781565 @default.
- W2531806530 hasAuthorship W2531806530A5028621059 @default.
- W2531806530 hasAuthorship W2531806530A5035052973 @default.
- W2531806530 hasAuthorship W2531806530A5049055621 @default.
- W2531806530 hasAuthorship W2531806530A5089831745 @default.
- W2531806530 hasAuthorship W2531806530A5090786767 @default.
- W2531806530 hasBestOaLocation W25318065301 @default.