Matches in SemOpenAlex for { <https://semopenalex.org/work/W2531873054> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2531873054 abstract "One main theme of this thesis is a connection between mathematical physics (in particular, the three-dimensional topological quantum field theory known as Chern-Simons theory) and three-dimensional topology. This connection arises because the partition function of Chern-Simons theory provides an invariant of three-manifolds, and the Wilson-loop observables in the theory define invariants of knots. In the first chapter, we review this connection, as well as more recent work that studies the classical limit of quantum Chern-Simons theory, leading to relations to another knot invariant known as the A -polynomial. (Roughly speaking, this invariant can be thought of as the moduli space of flat SL(2, C ) connections on the knot complement.) In fact, the connection can be deepened: through an embedding into string theory, categorifications of polynomial knot invariants can be understood as spaces of BPS states. We go on to study these homological knot invariants, and interpret spectral sequences that relate them to one another in terms of perturbations of supersymmetric theories. Our point is more general than the application to knots; in general, when one perturbs any modulus of a supersymmetric theory and breaks a symmetry, one should expect a spectral sequence to relate the BPS states of the unperturbed and perturbed theories. We consider several diverse instances of this general lesson. In another chapter, we consider connections between supersymmetric quantum mechanics and the de Rham version of homotopy theory developed by Sullivan; this leads to a new interpretation of Sullivan's minimal models, and of Massey products as vacuum states which are entangled between different degrees of freedom in these models. We then turn to consider a discrete model of holography: a Gaussian lattice model defined on an infinite tree of uniform valence. Despite being discrete, the matching of bulk isometries and boundary conformal symmetries takes place as usual; the relevant group is PGL(2, Q p) , and all of the formulas developed for holography in the context of scalar fields on fixed backgrounds have natural analogues in this setting. The key observation underlying this generalization is that the geometry underlying AdS3/CFT2 can be understood algebraically, and the base field can therefore be changed while maintaining much of the structure. Finally, we give some analysis of A -polynomials under change of base (to finite fields), bringing things full circle." @default.
- W2531873054 created "2016-10-21" @default.
- W2531873054 creator A5001066600 @default.
- W2531873054 date "2017-01-01" @default.
- W2531873054 modified "2023-09-27" @default.
- W2531873054 title "Knots, Trees, and Fields: Common Ground Between Physics and Mathematics" @default.
- W2531873054 doi "https://doi.org/10.7907/z9vx0dhz." @default.
- W2531873054 hasPublicationYear "2017" @default.
- W2531873054 type Work @default.
- W2531873054 sameAs 2531873054 @default.
- W2531873054 citedByCount "0" @default.
- W2531873054 crossrefType "dissertation" @default.
- W2531873054 hasAuthorship W2531873054A5001066600 @default.
- W2531873054 hasConcept C116674579 @default.
- W2531873054 hasConcept C121332964 @default.
- W2531873054 hasConcept C127413603 @default.
- W2531873054 hasConcept C13355873 @default.
- W2531873054 hasConcept C143330242 @default.
- W2531873054 hasConcept C190470478 @default.
- W2531873054 hasConcept C202444582 @default.
- W2531873054 hasConcept C2524010 @default.
- W2531873054 hasConcept C2779863119 @default.
- W2531873054 hasConcept C33332235 @default.
- W2531873054 hasConcept C33923547 @default.
- W2531873054 hasConcept C37914503 @default.
- W2531873054 hasConcept C42360764 @default.
- W2531873054 hasConcept C49987212 @default.
- W2531873054 hasConcept C5961521 @default.
- W2531873054 hasConcept C73373263 @default.
- W2531873054 hasConcept C7503960 @default.
- W2531873054 hasConceptScore W2531873054C116674579 @default.
- W2531873054 hasConceptScore W2531873054C121332964 @default.
- W2531873054 hasConceptScore W2531873054C127413603 @default.
- W2531873054 hasConceptScore W2531873054C13355873 @default.
- W2531873054 hasConceptScore W2531873054C143330242 @default.
- W2531873054 hasConceptScore W2531873054C190470478 @default.
- W2531873054 hasConceptScore W2531873054C202444582 @default.
- W2531873054 hasConceptScore W2531873054C2524010 @default.
- W2531873054 hasConceptScore W2531873054C2779863119 @default.
- W2531873054 hasConceptScore W2531873054C33332235 @default.
- W2531873054 hasConceptScore W2531873054C33923547 @default.
- W2531873054 hasConceptScore W2531873054C37914503 @default.
- W2531873054 hasConceptScore W2531873054C42360764 @default.
- W2531873054 hasConceptScore W2531873054C49987212 @default.
- W2531873054 hasConceptScore W2531873054C5961521 @default.
- W2531873054 hasConceptScore W2531873054C73373263 @default.
- W2531873054 hasConceptScore W2531873054C7503960 @default.
- W2531873054 hasLocation W25318730541 @default.
- W2531873054 hasOpenAccess W2531873054 @default.
- W2531873054 hasPrimaryLocation W25318730541 @default.
- W2531873054 hasRelatedWork W1530502791 @default.
- W2531873054 hasRelatedWork W1833202594 @default.
- W2531873054 hasRelatedWork W1906511349 @default.
- W2531873054 hasRelatedWork W2007634911 @default.
- W2531873054 hasRelatedWork W2154493121 @default.
- W2531873054 hasRelatedWork W2160753910 @default.
- W2531873054 hasRelatedWork W2220468317 @default.
- W2531873054 hasRelatedWork W2516675695 @default.
- W2531873054 hasRelatedWork W2891126485 @default.
- W2531873054 hasRelatedWork W2899780846 @default.
- W2531873054 hasRelatedWork W2980372246 @default.
- W2531873054 hasRelatedWork W2991165826 @default.
- W2531873054 hasRelatedWork W3027003767 @default.
- W2531873054 hasRelatedWork W3100815091 @default.
- W2531873054 hasRelatedWork W3100986547 @default.
- W2531873054 hasRelatedWork W3101969830 @default.
- W2531873054 hasRelatedWork W3103261696 @default.
- W2531873054 hasRelatedWork W3103482231 @default.
- W2531873054 hasRelatedWork W3104393720 @default.
- W2531873054 hasRelatedWork W955172237 @default.
- W2531873054 isParatext "false" @default.
- W2531873054 isRetracted "false" @default.
- W2531873054 magId "2531873054" @default.
- W2531873054 workType "dissertation" @default.