Matches in SemOpenAlex for { <https://semopenalex.org/work/W2532248611> ?p ?o ?g. }
- W2532248611 endingPage "27" @default.
- W2532248611 startingPage "20" @default.
- W2532248611 abstract "A city‘s ―smartness‖ depends greatly on citizens‘ participation in smart city services. Furthermore, citizens are becoming technology-oriented in every aspect concerning their convenience, comfort and safety. Thus, they become sensing nodes—or citizen sensors—within smart-cities with both static information and a constantly emitting activity system. This paper presents a novel approach to perform visual sentiment analysis of big visual data shared on social networks (such as Facebook, Twitter, LinkedIn, and Pinterest) using transfer learning. The proposed approach aims at contributing to smart citizens sensing area of smart cities. This work explores deep features of photos shared by users in Twitter via convolutional neural networks and transfer learning to predict sentiments. Moreover, we propose big data architecture to extract, save and transform raw Twitter image posts into useful insights. We obtained an overall prediction accuracy of 83.35%, which indicates that neural networks are indeed capable of predicting sentiments. Therefore, revealing interesting research opportunities and applications in the domain of smart sensing." @default.
- W2532248611 created "2016-10-28" @default.
- W2532248611 creator A5011432412 @default.
- W2532248611 creator A5023059915 @default.
- W2532248611 creator A5024166195 @default.
- W2532248611 date "2016-10-17" @default.
- W2532248611 modified "2023-09-23" @default.
- W2532248611 title "Smart Citizen Sensing: A Proposed Computational System with Visual Sentiment Analysis and Big Data Architecture" @default.
- W2532248611 cites W1508654189 @default.
- W2532248611 cites W1784731433 @default.
- W2532248611 cites W1832693441 @default.
- W2532248611 cites W1873332500 @default.
- W2532248611 cites W1875160599 @default.
- W2532248611 cites W1930624869 @default.
- W2532248611 cites W1963882359 @default.
- W2532248611 cites W1968654071 @default.
- W2532248611 cites W1979279430 @default.
- W2532248611 cites W1987133329 @default.
- W2532248611 cites W1994002998 @default.
- W2532248611 cites W2007538996 @default.
- W2532248611 cites W2023623938 @default.
- W2532248611 cites W2034498581 @default.
- W2532248611 cites W2041454412 @default.
- W2532248611 cites W2047281828 @default.
- W2532248611 cites W2048783874 @default.
- W2532248611 cites W2055983450 @default.
- W2532248611 cites W2063948594 @default.
- W2532248611 cites W2075456404 @default.
- W2532248611 cites W2102605133 @default.
- W2532248611 cites W2108598243 @default.
- W2532248611 cites W2108646579 @default.
- W2532248611 cites W2122528955 @default.
- W2532248611 cites W2132391423 @default.
- W2532248611 cites W2133990480 @default.
- W2532248611 cites W2148087540 @default.
- W2532248611 cites W2150819813 @default.
- W2532248611 cites W2151103935 @default.
- W2532248611 cites W2155541015 @default.
- W2532248611 cites W2161969291 @default.
- W2532248611 cites W2163605009 @default.
- W2532248611 cites W2167929175 @default.
- W2532248611 cites W2169177311 @default.
- W2532248611 cites W2251172991 @default.
- W2532248611 cites W2252215182 @default.
- W2532248611 cites W2253891449 @default.
- W2532248611 cites W2306941105 @default.
- W2532248611 cites W2338548859 @default.
- W2532248611 cites W23418094 @default.
- W2532248611 cites W2397786273 @default.
- W2532248611 cites W2406098156 @default.
- W2532248611 cites W2472490454 @default.
- W2532248611 cites W40911477 @default.
- W2532248611 cites W2129941311 @default.
- W2532248611 doi "https://doi.org/10.5120/ijca2016911880" @default.
- W2532248611 hasPublicationYear "2016" @default.
- W2532248611 type Work @default.
- W2532248611 sameAs 2532248611 @default.
- W2532248611 citedByCount "2" @default.
- W2532248611 countsByYear W25322486112017 @default.
- W2532248611 countsByYear W25322486112020 @default.
- W2532248611 crossrefType "journal-article" @default.
- W2532248611 hasAuthorship W2532248611A5011432412 @default.
- W2532248611 hasAuthorship W2532248611A5023059915 @default.
- W2532248611 hasAuthorship W2532248611A5024166195 @default.
- W2532248611 hasBestOaLocation W25322486111 @default.
- W2532248611 hasConcept C107457646 @default.
- W2532248611 hasConcept C123657996 @default.
- W2532248611 hasConcept C124101348 @default.
- W2532248611 hasConcept C142362112 @default.
- W2532248611 hasConcept C153349607 @default.
- W2532248611 hasConcept C154945302 @default.
- W2532248611 hasConcept C2522767166 @default.
- W2532248611 hasConcept C41008148 @default.
- W2532248611 hasConcept C49774154 @default.
- W2532248611 hasConcept C66402592 @default.
- W2532248611 hasConcept C75684735 @default.
- W2532248611 hasConceptScore W2532248611C107457646 @default.
- W2532248611 hasConceptScore W2532248611C123657996 @default.
- W2532248611 hasConceptScore W2532248611C124101348 @default.
- W2532248611 hasConceptScore W2532248611C142362112 @default.
- W2532248611 hasConceptScore W2532248611C153349607 @default.
- W2532248611 hasConceptScore W2532248611C154945302 @default.
- W2532248611 hasConceptScore W2532248611C2522767166 @default.
- W2532248611 hasConceptScore W2532248611C41008148 @default.
- W2532248611 hasConceptScore W2532248611C49774154 @default.
- W2532248611 hasConceptScore W2532248611C66402592 @default.
- W2532248611 hasConceptScore W2532248611C75684735 @default.
- W2532248611 hasIssue "6" @default.
- W2532248611 hasLocation W25322486111 @default.
- W2532248611 hasOpenAccess W2532248611 @default.
- W2532248611 hasPrimaryLocation W25322486111 @default.
- W2532248611 hasRelatedWork W2490696373 @default.
- W2532248611 hasRelatedWork W2548274677 @default.
- W2532248611 hasRelatedWork W2602741149 @default.
- W2532248611 hasRelatedWork W2780080067 @default.
- W2532248611 hasRelatedWork W2785614396 @default.
- W2532248611 hasRelatedWork W2900181313 @default.
- W2532248611 hasRelatedWork W2947924134 @default.