Matches in SemOpenAlex for { <https://semopenalex.org/work/W2532492888> ?p ?o ?g. }
- W2532492888 endingPage "171" @default.
- W2532492888 startingPage "161" @default.
- W2532492888 abstract "Screening alcohol use disorder (AUD) patients has been challenging due to the subjectivity involved in the process. Hence, robust and objective methods are needed to automate the screening of AUD patients. In this paper, a machine learning method is proposed that utilized resting-state electroencephalography (EEG)-derived features as input data to classify the AUD patients and healthy controls and to perform automatic screening of AUD patients. In this context, the EEG data were recorded during 5 min of eyes closed and 5 min of eyes open conditions. For this purpose, 30 AUD patients and 15 aged-matched healthy controls were recruited. After preprocessing the EEG data, EEG features such as inter-hemispheric coherences and spectral power for EEG delta, theta, alpha, beta and gamma bands were computed involving 19 scalp locations. The selection of most discriminant features was performed with a rank-based feature selection method assigning a weight value to each feature according to a criterion, i.e., receiver operating characteristics curve. For example, a feature with large weight was considered more relevant to the target labels than a feature with less weight. Therefore, a reduced set of most discriminant features was identified and further be utilized during classification of AUD patients and healthy controls. As results, the inter-hemispheric coherences between the brain regions were found significantly different between the study groups and provided high classification efficiency (Accuracy = 80.8, sensitivity = 82.5, and specificity = 80, F-Measure = 0.78). In addition, the power computed in different EEG bands were found significant and provided an overall classification efficiency as (Accuracy = 86.6, sensitivity = 95, specificity = 82.5, and F-Measure = 0.88). Further, the integration of these EEG feature resulted into even higher results (Accuracy = 89.3 %, sensitivity = 88.5 %, specificity = 91 %, and F-Measure = 0.90). Based on the results, it is concluded that the EEG data (integration of the theta, beta, and gamma power and inter-hemispheric coherence) could be utilized as objective markers to screen the AUD patients and healthy controls." @default.
- W2532492888 created "2016-10-28" @default.
- W2532492888 creator A5020520941 @default.
- W2532492888 creator A5040247771 @default.
- W2532492888 creator A5042801249 @default.
- W2532492888 creator A5045697627 @default.
- W2532492888 creator A5077623317 @default.
- W2532492888 date "2016-10-24" @default.
- W2532492888 modified "2023-10-16" @default.
- W2532492888 title "An EEG-based machine learning method to screen alcohol use disorder" @default.
- W2532492888 cites W1206391664 @default.
- W2532492888 cites W1258621312 @default.
- W2532492888 cites W1272799120 @default.
- W2532492888 cites W1505980726 @default.
- W2532492888 cites W1566797856 @default.
- W2532492888 cites W1941704709 @default.
- W2532492888 cites W1963750524 @default.
- W2532492888 cites W1965171845 @default.
- W2532492888 cites W1967116946 @default.
- W2532492888 cites W1968059839 @default.
- W2532492888 cites W1969596642 @default.
- W2532492888 cites W1971065470 @default.
- W2532492888 cites W1987147861 @default.
- W2532492888 cites W1989900235 @default.
- W2532492888 cites W1994330935 @default.
- W2532492888 cites W1994422401 @default.
- W2532492888 cites W1995164466 @default.
- W2532492888 cites W1995949104 @default.
- W2532492888 cites W1996180070 @default.
- W2532492888 cites W1998302204 @default.
- W2532492888 cites W2003318749 @default.
- W2532492888 cites W2007215820 @default.
- W2532492888 cites W2030415119 @default.
- W2532492888 cites W2030663742 @default.
- W2532492888 cites W2031054948 @default.
- W2532492888 cites W2033289789 @default.
- W2532492888 cites W2041319557 @default.
- W2532492888 cites W2049270581 @default.
- W2532492888 cites W2055662418 @default.
- W2532492888 cites W2056244878 @default.
- W2532492888 cites W2057540292 @default.
- W2532492888 cites W2064359344 @default.
- W2532492888 cites W2067065639 @default.
- W2532492888 cites W2078617617 @default.
- W2532492888 cites W2080959935 @default.
- W2532492888 cites W2097002922 @default.
- W2532492888 cites W2098330912 @default.
- W2532492888 cites W2104747305 @default.
- W2532492888 cites W2105959025 @default.
- W2532492888 cites W2112339374 @default.
- W2532492888 cites W2116131249 @default.
- W2532492888 cites W2117587191 @default.
- W2532492888 cites W2121475516 @default.
- W2532492888 cites W2123968116 @default.
- W2532492888 cites W2124995442 @default.
- W2532492888 cites W2129148118 @default.
- W2532492888 cites W2129660483 @default.
- W2532492888 cites W2130395838 @default.
- W2532492888 cites W2132810573 @default.
- W2532492888 cites W2147099769 @default.
- W2532492888 cites W2151499551 @default.
- W2532492888 cites W2155107011 @default.
- W2532492888 cites W2169594984 @default.
- W2532492888 cites W2172036914 @default.
- W2532492888 cites W2265005647 @default.
- W2532492888 cites W2276520418 @default.
- W2532492888 cites W2315140819 @default.
- W2532492888 cites W2342766803 @default.
- W2532492888 cites W4211080241 @default.
- W2532492888 cites W4236998812 @default.
- W2532492888 cites W4251690536 @default.
- W2532492888 cites W4252612337 @default.
- W2532492888 doi "https://doi.org/10.1007/s11571-016-9416-y" @default.
- W2532492888 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5350086" @default.
- W2532492888 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28348647" @default.
- W2532492888 hasPublicationYear "2016" @default.
- W2532492888 type Work @default.
- W2532492888 sameAs 2532492888 @default.
- W2532492888 citedByCount "53" @default.
- W2532492888 countsByYear W25324928882017 @default.
- W2532492888 countsByYear W25324928882018 @default.
- W2532492888 countsByYear W25324928882019 @default.
- W2532492888 countsByYear W25324928882020 @default.
- W2532492888 countsByYear W25324928882021 @default.
- W2532492888 countsByYear W25324928882022 @default.
- W2532492888 countsByYear W25324928882023 @default.
- W2532492888 crossrefType "journal-article" @default.
- W2532492888 hasAuthorship W2532492888A5020520941 @default.
- W2532492888 hasAuthorship W2532492888A5040247771 @default.
- W2532492888 hasAuthorship W2532492888A5042801249 @default.
- W2532492888 hasAuthorship W2532492888A5045697627 @default.
- W2532492888 hasAuthorship W2532492888A5077623317 @default.
- W2532492888 hasBestOaLocation W25324928882 @default.
- W2532492888 hasConcept C118552586 @default.
- W2532492888 hasConcept C119857082 @default.
- W2532492888 hasConcept C138885662 @default.
- W2532492888 hasConcept C148483581 @default.
- W2532492888 hasConcept C151730666 @default.