Matches in SemOpenAlex for { <https://semopenalex.org/work/W2532595094> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2532595094 abstract "This chapter discusses techniques for analysis and optimization of portfolio statistics, based on direct use of samples of random data. For a given and fixed portfolio of financial assets, a classical approach for evaluating, say, the value-at-risk (V@R) of the portfolio is a model-based one, whereby one first assumes some stochastic model for the component returns (e.g., Normal), then estimates the parameters of this model from data, and finally computes the portfolio V@R. Such a process hinges upon critical assumptions (e.g., the elicited return distribution), and leaves unclear the effects of model estimation errors on the computed quantity of interest. Here, we propose an alternative direct route that bypasses the assumption and estimation of a model for the returns, and provides the estimated quantity of interest (together with its out-of-sample reliability tag) directly from data generated by a scenario generation oracle. This idea is then extended to the situation where one simultaneously optimizes over the portfolio composition, in order to achieve an optimal portfolio with a guaranteed level of expected shortfall probability. Such a scenario-based portfolio design approach is here developed for both single-period and multi-period allocation problems. The methodology underpinning the proposed computational method is that of random convex programming (RCP). Besides the described data-driven problems, we show in this chapter that the RCP paradigm can also be employed alongside more standard mean-variance portfolio optimization settings, in the presence of ambiguity in the statistical model of the returns, providing a viable technique to address robust portfolio optimization problems." @default.
- W2532595094 created "2016-10-28" @default.
- W2532595094 creator A5041746196 @default.
- W2532595094 date "2016-10-18" @default.
- W2532595094 modified "2023-09-27" @default.
- W2532595094 title "Scenario Optimization Methods in Portfolio Analysis and Design" @default.
- W2532595094 cites W1968355947 @default.
- W2532595094 cites W1976466849 @default.
- W2532595094 cites W2020274275 @default.
- W2532595094 cites W2021472931 @default.
- W2532595094 cites W2033500977 @default.
- W2532595094 cites W2038865108 @default.
- W2532595094 cites W2042587503 @default.
- W2532595094 cites W2055688117 @default.
- W2532595094 cites W2069099760 @default.
- W2532595094 cites W2081080078 @default.
- W2532595094 cites W2120547244 @default.
- W2532595094 cites W2131295967 @default.
- W2532595094 cites W2156844203 @default.
- W2532595094 cites W2164883547 @default.
- W2532595094 cites W2167412190 @default.
- W2532595094 cites W2170344528 @default.
- W2532595094 cites W2510104834 @default.
- W2532595094 cites W2784884531 @default.
- W2532595094 doi "https://doi.org/10.1007/978-3-319-41613-7_3" @default.
- W2532595094 hasPublicationYear "2016" @default.
- W2532595094 type Work @default.
- W2532595094 sameAs 2532595094 @default.
- W2532595094 citedByCount "1" @default.
- W2532595094 countsByYear W25325950942018 @default.
- W2532595094 crossrefType "book-chapter" @default.
- W2532595094 hasAuthorship W2532595094A5041746196 @default.
- W2532595094 hasConcept C106159729 @default.
- W2532595094 hasConcept C126255220 @default.
- W2532595094 hasConcept C137631369 @default.
- W2532595094 hasConcept C149782125 @default.
- W2532595094 hasConcept C162324750 @default.
- W2532595094 hasConcept C202655437 @default.
- W2532595094 hasConcept C21099588 @default.
- W2532595094 hasConcept C2780821815 @default.
- W2532595094 hasConcept C33923547 @default.
- W2532595094 hasConcept C41008148 @default.
- W2532595094 hasConcept C67051015 @default.
- W2532595094 hasConcept C9725762 @default.
- W2532595094 hasConceptScore W2532595094C106159729 @default.
- W2532595094 hasConceptScore W2532595094C126255220 @default.
- W2532595094 hasConceptScore W2532595094C137631369 @default.
- W2532595094 hasConceptScore W2532595094C149782125 @default.
- W2532595094 hasConceptScore W2532595094C162324750 @default.
- W2532595094 hasConceptScore W2532595094C202655437 @default.
- W2532595094 hasConceptScore W2532595094C21099588 @default.
- W2532595094 hasConceptScore W2532595094C2780821815 @default.
- W2532595094 hasConceptScore W2532595094C33923547 @default.
- W2532595094 hasConceptScore W2532595094C41008148 @default.
- W2532595094 hasConceptScore W2532595094C67051015 @default.
- W2532595094 hasConceptScore W2532595094C9725762 @default.
- W2532595094 hasLocation W25325950941 @default.
- W2532595094 hasOpenAccess W2532595094 @default.
- W2532595094 hasPrimaryLocation W25325950941 @default.
- W2532595094 hasRelatedWork W1552719432 @default.
- W2532595094 hasRelatedWork W1737593579 @default.
- W2532595094 hasRelatedWork W2069099760 @default.
- W2532595094 hasRelatedWork W2073617694 @default.
- W2532595094 hasRelatedWork W2106283902 @default.
- W2532595094 hasRelatedWork W2134453995 @default.
- W2532595094 hasRelatedWork W2143878303 @default.
- W2532595094 hasRelatedWork W2461001980 @default.
- W2532595094 hasRelatedWork W2476900428 @default.
- W2532595094 hasRelatedWork W2486849057 @default.
- W2532595094 hasRelatedWork W2504507123 @default.
- W2532595094 hasRelatedWork W2507821998 @default.
- W2532595094 hasRelatedWork W2598699047 @default.
- W2532595094 hasRelatedWork W2873490324 @default.
- W2532595094 hasRelatedWork W3116590011 @default.
- W2532595094 hasRelatedWork W3123230897 @default.
- W2532595094 hasRelatedWork W3143006403 @default.
- W2532595094 hasRelatedWork W3144971854 @default.
- W2532595094 hasRelatedWork W3185344048 @default.
- W2532595094 hasRelatedWork W1938178559 @default.
- W2532595094 isParatext "false" @default.
- W2532595094 isRetracted "false" @default.
- W2532595094 magId "2532595094" @default.
- W2532595094 workType "book-chapter" @default.