Matches in SemOpenAlex for { <https://semopenalex.org/work/W2532634181> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2532634181 abstract "Monitoring changes in important parameters has been suggested as a potentially useful condition monitoring (CM) method for the accidents occurred in nuclear power plants (NPPs). The reactor core power is believed to be an important parameter governing the performance of reactor during transient response. The accurate prediction of reactor behavior and power is very important for nuclear power plant operators, especially during the major severe accident scenarios following an initiating event such as rod ejection accident (REA) or rod drop accident (RDA). REA and RDA together are found to be the worst postulated power transients in reactor licensing and are referred to as reactivity-initiated accidents (RIAs). RIAs is a postulated event of very low probability and involves inadvertent removal of a control element from an operating reactor, leading to a rapid power excursion in nearby fuel elements. On the basis of our previous work, in which only REA scenario is analyzed, the primary objective of this study is to develop and implement fuzzy weighted support vector regression (FWSVR) for condition monitoring under REA and RDA in NPPs. FWSVR is an extension of support vector regression (SVR) which introduces fuzzy weights in traditional SVR formulation. The accidents simulated in this study are based on the same model used in our previous work. This model can be accomplished by two procedures. First, the neutron flux and enthalpy distributions of the core can be obtained from a solution to the three-dimensional nodal space time kinetics equations and energy equations for both single and two-phase flows respectively. Second, the reactivity effects of the moderator temperature, boron concentration, fuel temperature, coolant void, xenon worth, samarium worth, control element positions (CEAs) and core burnup status can be calculated and determined. For the purpose of condition monitoring, it’s a fundamental issue to acquire condition monitoring data for useful data representation. Otherwise, it’s hard to predict the power accurately if enough data is not available. The data used in this study is collected from computer generated accident scenarios. Then the obtained data is split into two subgroups, training and test. The training subgroup data is utilized to train the FWSVR model and the fuzzy weights introduced in FWSVR are employed to extract multiple linear structures in a training dataset and assign to each data point a cluster index determined by its trained kernel radius function. The test is employed to validate the model. Finally the results of FWSVR model are compared with that of other models such as traditional SVR and back propagation network (BPN) which is one type of artificial neural networks (ANNs). Comparison of results among the three methods indicates that FWSVR model not only outperforms traditional SVR and BPN, but also has a better agreement with the general understanding than them." @default.
- W2532634181 created "2016-10-28" @default.
- W2532634181 creator A5063682538 @default.
- W2532634181 creator A5079035640 @default.
- W2532634181 creator A5087018415 @default.
- W2532634181 date "2016-06-26" @default.
- W2532634181 modified "2023-09-24" @default.
- W2532634181 title "Application of Fuzzy Weighted Support Vector Regression to Accidents Condition Monitoring of Nuclear Power Plant" @default.
- W2532634181 cites W146791031 @default.
- W2532634181 cites W1568887795 @default.
- W2532634181 cites W1971888031 @default.
- W2532634181 cites W2008094317 @default.
- W2532634181 cites W2014828896 @default.
- W2532634181 cites W2017793437 @default.
- W2532634181 cites W2052239969 @default.
- W2532634181 cites W2269199018 @default.
- W2532634181 cites W3119651796 @default.
- W2532634181 doi "https://doi.org/10.1115/icone24-60983" @default.
- W2532634181 hasPublicationYear "2016" @default.
- W2532634181 type Work @default.
- W2532634181 sameAs 2532634181 @default.
- W2532634181 citedByCount "2" @default.
- W2532634181 countsByYear W25326341812018 @default.
- W2532634181 countsByYear W25326341812020 @default.
- W2532634181 crossrefType "proceedings-article" @default.
- W2532634181 hasAuthorship W2532634181A5063682538 @default.
- W2532634181 hasAuthorship W2532634181A5079035640 @default.
- W2532634181 hasAuthorship W2532634181A5087018415 @default.
- W2532634181 hasConcept C105795698 @default.
- W2532634181 hasConcept C121332964 @default.
- W2532634181 hasConcept C12267149 @default.
- W2532634181 hasConcept C124101348 @default.
- W2532634181 hasConcept C127413603 @default.
- W2532634181 hasConcept C154945302 @default.
- W2532634181 hasConcept C185544564 @default.
- W2532634181 hasConcept C2779979336 @default.
- W2532634181 hasConcept C33923547 @default.
- W2532634181 hasConcept C41008148 @default.
- W2532634181 hasConcept C513653683 @default.
- W2532634181 hasConcept C58166 @default.
- W2532634181 hasConceptScore W2532634181C105795698 @default.
- W2532634181 hasConceptScore W2532634181C121332964 @default.
- W2532634181 hasConceptScore W2532634181C12267149 @default.
- W2532634181 hasConceptScore W2532634181C124101348 @default.
- W2532634181 hasConceptScore W2532634181C127413603 @default.
- W2532634181 hasConceptScore W2532634181C154945302 @default.
- W2532634181 hasConceptScore W2532634181C185544564 @default.
- W2532634181 hasConceptScore W2532634181C2779979336 @default.
- W2532634181 hasConceptScore W2532634181C33923547 @default.
- W2532634181 hasConceptScore W2532634181C41008148 @default.
- W2532634181 hasConceptScore W2532634181C513653683 @default.
- W2532634181 hasConceptScore W2532634181C58166 @default.
- W2532634181 hasLocation W25326341811 @default.
- W2532634181 hasOpenAccess W2532634181 @default.
- W2532634181 hasPrimaryLocation W25326341811 @default.
- W2532634181 hasRelatedWork W1543617389 @default.
- W2532634181 hasRelatedWork W2002034627 @default.
- W2532634181 hasRelatedWork W2006575529 @default.
- W2532634181 hasRelatedWork W2057456950 @default.
- W2532634181 hasRelatedWork W2083752604 @default.
- W2532634181 hasRelatedWork W2088490556 @default.
- W2532634181 hasRelatedWork W2130782278 @default.
- W2532634181 hasRelatedWork W2141380957 @default.
- W2532634181 hasRelatedWork W2147550934 @default.
- W2532634181 hasRelatedWork W2151962465 @default.
- W2532634181 hasRelatedWork W2158980417 @default.
- W2532634181 hasRelatedWork W2322235488 @default.
- W2532634181 hasRelatedWork W2535109428 @default.
- W2532634181 hasRelatedWork W2557212379 @default.
- W2532634181 hasRelatedWork W2767121291 @default.
- W2532634181 hasRelatedWork W3158177337 @default.
- W2532634181 hasRelatedWork W3200229507 @default.
- W2532634181 hasRelatedWork W3200311108 @default.
- W2532634181 hasRelatedWork W3201120713 @default.
- W2532634181 hasRelatedWork W2935181575 @default.
- W2532634181 isParatext "false" @default.
- W2532634181 isRetracted "false" @default.
- W2532634181 magId "2532634181" @default.
- W2532634181 workType "article" @default.