Matches in SemOpenAlex for { <https://semopenalex.org/work/W2532797789> ?p ?o ?g. }
- W2532797789 endingPage "46" @default.
- W2532797789 startingPage "40" @default.
- W2532797789 abstract "Principal component analysis (PCA) is among the most commonly applied dimension reduction techniques suitable to denoise data. Focusing on its limitations to detect low variance signals in noisy data, we discuss how statistical and systematical errors occur in PCA reconstructed data as a function of the size of the data set, which extends the work of Lichtert and Verbeeck, (2013) [16]. Particular attention is directed towards the estimation of bias introduced by PCA and its influence on experiment design. Aiming at the denoising of large matrices, nullspace based denoising (NBD) is introduced." @default.
- W2532797789 created "2016-10-28" @default.
- W2532797789 creator A5040153804 @default.
- W2532797789 creator A5086012585 @default.
- W2532797789 date "2017-01-01" @default.
- W2532797789 modified "2023-09-23" @default.
- W2532797789 title "Can we use PCA to detect small signals in noisy data?" @default.
- W2532797789 cites W1902122944 @default.
- W2532797789 cites W1976248692 @default.
- W2532797789 cites W1989447781 @default.
- W2532797789 cites W2010530217 @default.
- W2532797789 cites W2011552499 @default.
- W2532797789 cites W2060831633 @default.
- W2532797789 cites W2071128523 @default.
- W2532797789 cites W2071794500 @default.
- W2532797789 cites W2079601813 @default.
- W2532797789 cites W2085113815 @default.
- W2532797789 cites W2093785304 @default.
- W2532797789 cites W2127837300 @default.
- W2532797789 cites W2133097426 @default.
- W2532797789 cites W2156387937 @default.
- W2532797789 cites W2210975171 @default.
- W2532797789 cites W2314740604 @default.
- W2532797789 cites W2467203645 @default.
- W2532797789 cites W3101798760 @default.
- W2532797789 cites W4241104268 @default.
- W2532797789 doi "https://doi.org/10.1016/j.ultramic.2016.10.008" @default.
- W2532797789 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27794219" @default.
- W2532797789 hasPublicationYear "2017" @default.
- W2532797789 type Work @default.
- W2532797789 sameAs 2532797789 @default.
- W2532797789 citedByCount "28" @default.
- W2532797789 countsByYear W25327977892017 @default.
- W2532797789 countsByYear W25327977892018 @default.
- W2532797789 countsByYear W25327977892019 @default.
- W2532797789 countsByYear W25327977892020 @default.
- W2532797789 countsByYear W25327977892021 @default.
- W2532797789 countsByYear W25327977892022 @default.
- W2532797789 countsByYear W25327977892023 @default.
- W2532797789 crossrefType "journal-article" @default.
- W2532797789 hasAuthorship W2532797789A5040153804 @default.
- W2532797789 hasAuthorship W2532797789A5086012585 @default.
- W2532797789 hasConcept C11413529 @default.
- W2532797789 hasConcept C115961682 @default.
- W2532797789 hasConcept C121955636 @default.
- W2532797789 hasConcept C124101348 @default.
- W2532797789 hasConcept C14036430 @default.
- W2532797789 hasConcept C144133560 @default.
- W2532797789 hasConcept C153180895 @default.
- W2532797789 hasConcept C153914771 @default.
- W2532797789 hasConcept C154945302 @default.
- W2532797789 hasConcept C163294075 @default.
- W2532797789 hasConcept C177264268 @default.
- W2532797789 hasConcept C196083921 @default.
- W2532797789 hasConcept C199360897 @default.
- W2532797789 hasConcept C202444582 @default.
- W2532797789 hasConcept C27438332 @default.
- W2532797789 hasConcept C2781170535 @default.
- W2532797789 hasConcept C33676613 @default.
- W2532797789 hasConcept C33923547 @default.
- W2532797789 hasConcept C41008148 @default.
- W2532797789 hasConcept C58489278 @default.
- W2532797789 hasConcept C70518039 @default.
- W2532797789 hasConcept C78458016 @default.
- W2532797789 hasConcept C86803240 @default.
- W2532797789 hasConcept C99498987 @default.
- W2532797789 hasConceptScore W2532797789C11413529 @default.
- W2532797789 hasConceptScore W2532797789C115961682 @default.
- W2532797789 hasConceptScore W2532797789C121955636 @default.
- W2532797789 hasConceptScore W2532797789C124101348 @default.
- W2532797789 hasConceptScore W2532797789C14036430 @default.
- W2532797789 hasConceptScore W2532797789C144133560 @default.
- W2532797789 hasConceptScore W2532797789C153180895 @default.
- W2532797789 hasConceptScore W2532797789C153914771 @default.
- W2532797789 hasConceptScore W2532797789C154945302 @default.
- W2532797789 hasConceptScore W2532797789C163294075 @default.
- W2532797789 hasConceptScore W2532797789C177264268 @default.
- W2532797789 hasConceptScore W2532797789C196083921 @default.
- W2532797789 hasConceptScore W2532797789C199360897 @default.
- W2532797789 hasConceptScore W2532797789C202444582 @default.
- W2532797789 hasConceptScore W2532797789C27438332 @default.
- W2532797789 hasConceptScore W2532797789C2781170535 @default.
- W2532797789 hasConceptScore W2532797789C33676613 @default.
- W2532797789 hasConceptScore W2532797789C33923547 @default.
- W2532797789 hasConceptScore W2532797789C41008148 @default.
- W2532797789 hasConceptScore W2532797789C58489278 @default.
- W2532797789 hasConceptScore W2532797789C70518039 @default.
- W2532797789 hasConceptScore W2532797789C78458016 @default.
- W2532797789 hasConceptScore W2532797789C86803240 @default.
- W2532797789 hasConceptScore W2532797789C99498987 @default.
- W2532797789 hasFunder F4320321033 @default.
- W2532797789 hasLocation W25327977891 @default.
- W2532797789 hasLocation W25327977892 @default.
- W2532797789 hasOpenAccess W2532797789 @default.
- W2532797789 hasPrimaryLocation W25327977891 @default.
- W2532797789 hasRelatedWork W2006190475 @default.
- W2532797789 hasRelatedWork W2037772955 @default.
- W2532797789 hasRelatedWork W2086020743 @default.