Matches in SemOpenAlex for { <https://semopenalex.org/work/W2532810669> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2532810669 abstract "Haptics, as well as force and torque measurements, are increasingly gaining attention in the fields of kinesthetic learning and robot Learning from demonstration (LfD). For such learning techniques, it is essential to obtain accurate force and torque measurements in order to enable accurate control. However, force and torque measurements using a 6-axis force and torque sensor mounted at the end effector of an industrial robot are known to be corrupted due to the robots internal forces, gravity, un-modelled dynamics and nonlinear effects. This paper presents an evaluation of two techniques, SVR and Random Forests, to recover the external forces and accurately selected possible contact situations by estimating a robots internal forces. The performance of the learned models have been evaluated using different performance metrics and comparing them with respect to the features contained in the input space. Both SVR and Random Forests require low computational complexity without intensive training over the operational space under the given ssumptions. In addition, these methods do not need data to be available online. The SVR and Random Forests models are experimentally validated using Motoman SDA10D dual-arm industrial robot controlled by Robot Operating System (ROS). The experiments showed that force and torque compensation based on Random Forests has outperformed Support Vector Regression." @default.
- W2532810669 created "2016-10-28" @default.
- W2532810669 creator A5001308079 @default.
- W2532810669 creator A5003981297 @default.
- W2532810669 creator A5023066235 @default.
- W2532810669 creator A5042700794 @default.
- W2532810669 creator A5053137552 @default.
- W2532810669 creator A5072410037 @default.
- W2532810669 date "2016-01-01" @default.
- W2532810669 modified "2023-09-25" @default.
- W2532810669 title "Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression" @default.
- W2532810669 cites W1966948790 @default.
- W2532810669 cites W2007864935 @default.
- W2532810669 cites W2028289838 @default.
- W2532810669 cites W2046710401 @default.
- W2532810669 cites W2086087122 @default.
- W2532810669 cites W2090828369 @default.
- W2532810669 cites W2101218549 @default.
- W2532810669 cites W2101234009 @default.
- W2532810669 cites W2101728275 @default.
- W2532810669 cites W2105267951 @default.
- W2532810669 cites W2128302979 @default.
- W2532810669 cites W2129018774 @default.
- W2532810669 cites W2149706766 @default.
- W2532810669 cites W2911964244 @default.
- W2532810669 cites W2912934387 @default.
- W2532810669 doi "https://doi.org/10.2316/p.2016.847-002" @default.
- W2532810669 hasPublicationYear "2016" @default.
- W2532810669 type Work @default.
- W2532810669 sameAs 2532810669 @default.
- W2532810669 citedByCount "0" @default.
- W2532810669 crossrefType "proceedings-article" @default.
- W2532810669 hasAuthorship W2532810669A5001308079 @default.
- W2532810669 hasAuthorship W2532810669A5003981297 @default.
- W2532810669 hasAuthorship W2532810669A5023066235 @default.
- W2532810669 hasAuthorship W2532810669A5042700794 @default.
- W2532810669 hasAuthorship W2532810669A5053137552 @default.
- W2532810669 hasAuthorship W2532810669A5072410037 @default.
- W2532810669 hasBestOaLocation W25328106692 @default.
- W2532810669 hasConcept C105795698 @default.
- W2532810669 hasConcept C11171543 @default.
- W2532810669 hasConcept C121332964 @default.
- W2532810669 hasConcept C12267149 @default.
- W2532810669 hasConcept C144171764 @default.
- W2532810669 hasConcept C154945302 @default.
- W2532810669 hasConcept C15744967 @default.
- W2532810669 hasConcept C169258074 @default.
- W2532810669 hasConcept C2780023022 @default.
- W2532810669 hasConcept C33923547 @default.
- W2532810669 hasConcept C39432304 @default.
- W2532810669 hasConcept C41008148 @default.
- W2532810669 hasConcept C83546350 @default.
- W2532810669 hasConcept C90509273 @default.
- W2532810669 hasConcept C97355855 @default.
- W2532810669 hasConceptScore W2532810669C105795698 @default.
- W2532810669 hasConceptScore W2532810669C11171543 @default.
- W2532810669 hasConceptScore W2532810669C121332964 @default.
- W2532810669 hasConceptScore W2532810669C12267149 @default.
- W2532810669 hasConceptScore W2532810669C144171764 @default.
- W2532810669 hasConceptScore W2532810669C154945302 @default.
- W2532810669 hasConceptScore W2532810669C15744967 @default.
- W2532810669 hasConceptScore W2532810669C169258074 @default.
- W2532810669 hasConceptScore W2532810669C2780023022 @default.
- W2532810669 hasConceptScore W2532810669C33923547 @default.
- W2532810669 hasConceptScore W2532810669C39432304 @default.
- W2532810669 hasConceptScore W2532810669C41008148 @default.
- W2532810669 hasConceptScore W2532810669C83546350 @default.
- W2532810669 hasConceptScore W2532810669C90509273 @default.
- W2532810669 hasConceptScore W2532810669C97355855 @default.
- W2532810669 hasLocation W25328106691 @default.
- W2532810669 hasLocation W25328106692 @default.
- W2532810669 hasLocation W25328106693 @default.
- W2532810669 hasOpenAccess W2532810669 @default.
- W2532810669 hasPrimaryLocation W25328106691 @default.
- W2532810669 hasRelatedWork W2140937121 @default.
- W2532810669 hasRelatedWork W2776601773 @default.
- W2532810669 hasRelatedWork W3086642004 @default.
- W2532810669 hasRelatedWork W3195168932 @default.
- W2532810669 hasRelatedWork W3217110323 @default.
- W2532810669 hasRelatedWork W4220933319 @default.
- W2532810669 hasRelatedWork W4287669202 @default.
- W2532810669 hasRelatedWork W4311106074 @default.
- W2532810669 hasRelatedWork W4320483443 @default.
- W2532810669 hasRelatedWork W4366967101 @default.
- W2532810669 isParatext "false" @default.
- W2532810669 isRetracted "false" @default.
- W2532810669 magId "2532810669" @default.
- W2532810669 workType "article" @default.