Matches in SemOpenAlex for { <https://semopenalex.org/work/W2532925568> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2532925568 abstract "The accurate prediction of hydrological behaviour in both urban and rural watershed can provide valuable information for the urban planning, land use, design of civil project and water resources management. Hydrology system is influenced by many factors such as weather, land cover, infiltration, evapotranspiration, so it includes the good deal of stochastic dependent component, multi-time scale and highly nonlinear characteristics. Hydrologic time series are often nonlinear. In spite of high flexibility of Artificial Neural Network (ANN) in modelling hydrologic time series, sometimes signals exhibit seasonal irregularity. In such situation, ANN may not be able to cope with such data if pre-processing of input and/or output data is not performed. Pre-processing data refers to analysing and transforming input and output variables in order to detect trends, minimise noise, underline important relationship and flatten the variables distribution in a time series. These analysis and transformations help the model learn relevant patterns. Pre-processing techniques, which facilitates stabilisation of the mean and variance, and seasonality removal, are often applied to remove irregularities in data used to build soft computing models. In this study, different data pre-processing techniques are presented to deal with irregularity components existing in a hydrologic time series data of the Brahmaputra basin within India at the Pandu gauging station near Guwahati city using daily time unit and their properties are evaluated by performing one step ahead flow forecasting using ANN. The model results were evaluated using root mean square error (RMSE) and mean absolute percentage error (MAPE) and found that logarithmic-based pre-processing techniques provide better forecasting performance among various pre-processing techniques. The results indicate that detecting irregularities and selecting an appropriate pre-processing technique is highly beneficial in improving the prediction performance of ANN model." @default.
- W2532925568 created "2016-10-28" @default.
- W2532925568 creator A5054654905 @default.
- W2532925568 creator A5079201906 @default.
- W2532925568 date "2016-01-01" @default.
- W2532925568 modified "2023-09-27" @default.
- W2532925568 title "Effects of Data Pre-processing on the Prediction Accuracy of Artificial Neural Network Model in Hydrological Time Series" @default.
- W2532925568 cites W1586335931 @default.
- W2532925568 cites W1995319408 @default.
- W2532925568 cites W1998442441 @default.
- W2532925568 cites W2026938221 @default.
- W2532925568 cites W2109818942 @default.
- W2532925568 cites W2163985548 @default.
- W2532925568 cites W4231149697 @default.
- W2532925568 doi "https://doi.org/10.1007/978-3-319-40195-9_21" @default.
- W2532925568 hasPublicationYear "2016" @default.
- W2532925568 type Work @default.
- W2532925568 sameAs 2532925568 @default.
- W2532925568 citedByCount "4" @default.
- W2532925568 countsByYear W25329255682017 @default.
- W2532925568 countsByYear W25329255682020 @default.
- W2532925568 countsByYear W25329255682021 @default.
- W2532925568 crossrefType "book-chapter" @default.
- W2532925568 hasAuthorship W2532925568A5054654905 @default.
- W2532925568 hasAuthorship W2532925568A5079201906 @default.
- W2532925568 hasConcept C105795698 @default.
- W2532925568 hasConcept C119857082 @default.
- W2532925568 hasConcept C124101348 @default.
- W2532925568 hasConcept C127413603 @default.
- W2532925568 hasConcept C139945424 @default.
- W2532925568 hasConcept C150217764 @default.
- W2532925568 hasConcept C151406439 @default.
- W2532925568 hasConcept C176783924 @default.
- W2532925568 hasConcept C187320778 @default.
- W2532925568 hasConcept C18903297 @default.
- W2532925568 hasConcept C33923547 @default.
- W2532925568 hasConcept C41008148 @default.
- W2532925568 hasConcept C50644808 @default.
- W2532925568 hasConcept C76886044 @default.
- W2532925568 hasConcept C86803240 @default.
- W2532925568 hasConceptScore W2532925568C105795698 @default.
- W2532925568 hasConceptScore W2532925568C119857082 @default.
- W2532925568 hasConceptScore W2532925568C124101348 @default.
- W2532925568 hasConceptScore W2532925568C127413603 @default.
- W2532925568 hasConceptScore W2532925568C139945424 @default.
- W2532925568 hasConceptScore W2532925568C150217764 @default.
- W2532925568 hasConceptScore W2532925568C151406439 @default.
- W2532925568 hasConceptScore W2532925568C176783924 @default.
- W2532925568 hasConceptScore W2532925568C187320778 @default.
- W2532925568 hasConceptScore W2532925568C18903297 @default.
- W2532925568 hasConceptScore W2532925568C33923547 @default.
- W2532925568 hasConceptScore W2532925568C41008148 @default.
- W2532925568 hasConceptScore W2532925568C50644808 @default.
- W2532925568 hasConceptScore W2532925568C76886044 @default.
- W2532925568 hasConceptScore W2532925568C86803240 @default.
- W2532925568 hasLocation W25329255681 @default.
- W2532925568 hasOpenAccess W2532925568 @default.
- W2532925568 hasPrimaryLocation W25329255681 @default.
- W2532925568 hasRelatedWork W1991656842 @default.
- W2532925568 hasRelatedWork W2267892310 @default.
- W2532925568 hasRelatedWork W2280228727 @default.
- W2532925568 hasRelatedWork W2328012335 @default.
- W2532925568 hasRelatedWork W2377841606 @default.
- W2532925568 hasRelatedWork W2460357073 @default.
- W2532925568 hasRelatedWork W2602569600 @default.
- W2532925568 hasRelatedWork W2743018164 @default.
- W2532925568 hasRelatedWork W2784938620 @default.
- W2532925568 hasRelatedWork W2800887117 @default.
- W2532925568 hasRelatedWork W3045630365 @default.
- W2532925568 hasRelatedWork W3155685971 @default.
- W2532925568 hasRelatedWork W3164800779 @default.
- W2532925568 hasRelatedWork W3165653978 @default.
- W2532925568 hasRelatedWork W3170247365 @default.
- W2532925568 hasRelatedWork W891512667 @default.
- W2532925568 hasRelatedWork W2184109642 @default.
- W2532925568 hasRelatedWork W2188996292 @default.
- W2532925568 hasRelatedWork W2224023335 @default.
- W2532925568 hasRelatedWork W3090353134 @default.
- W2532925568 isParatext "false" @default.
- W2532925568 isRetracted "false" @default.
- W2532925568 magId "2532925568" @default.
- W2532925568 workType "book-chapter" @default.