Matches in SemOpenAlex for { <https://semopenalex.org/work/W2533221562> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2533221562 abstract "Texture is one of the most important features in the analysis of images. It has been increasingly used in computer vision applications. In this study, the ability of three statistical texture analysis measures to perform lamb grading were compared with respect to the classification accuracy. The texture measures examined were the grey level difference method (GLDM), the spatial grey level co-occurrence matrix (GLCM) and the grey level run length matrix (GLRM). In addition, some image geometric features were also measured. The dimensionality of the input feature space was reduced using principal component analysis (PCA). The classification was performed using individual reduced feature sets and their combinations. Both discriminant function analysis (DFA) and artificial neural network (ANN) analysis were used for classification of lamb chop images into different grades. The results indicated that GLCM is the best texture measure, of the three texture measures considered, for lamb grading. The geometric features also performed equally well. Both GLCM and geometric features performed better than GLRM and GLDM. The higher classification performance was achieved by combining feature sets. The ANN produced higher classifications than DFA" @default.
- W2533221562 created "2016-10-28" @default.
- W2533221562 creator A5077959759 @default.
- W2533221562 date "2006-08-01" @default.
- W2533221562 modified "2023-09-27" @default.
- W2533221562 title "Comparison of Three Statistical Texture Measures for Lamb Grading" @default.
- W2533221562 cites W1991540258 @default.
- W2533221562 cites W1992267663 @default.
- W2533221562 cites W2003304826 @default.
- W2533221562 cites W2016606566 @default.
- W2533221562 cites W2019023483 @default.
- W2533221562 cites W2034162597 @default.
- W2533221562 cites W2034415331 @default.
- W2533221562 cites W2038836824 @default.
- W2533221562 cites W2039051707 @default.
- W2533221562 cites W2044465660 @default.
- W2533221562 cites W2047331772 @default.
- W2533221562 cites W2056472112 @default.
- W2533221562 cites W2059432853 @default.
- W2533221562 cites W2072071131 @default.
- W2533221562 cites W2075029027 @default.
- W2533221562 cites W2117395697 @default.
- W2533221562 cites W2120587770 @default.
- W2533221562 cites W2163363072 @default.
- W2533221562 cites W2536901582 @default.
- W2533221562 cites W2911956715 @default.
- W2533221562 cites W2116924535 @default.
- W2533221562 doi "https://doi.org/10.1109/iciis.2006.365782" @default.
- W2533221562 hasPublicationYear "2006" @default.
- W2533221562 type Work @default.
- W2533221562 sameAs 2533221562 @default.
- W2533221562 citedByCount "7" @default.
- W2533221562 countsByYear W25332215622012 @default.
- W2533221562 countsByYear W25332215622015 @default.
- W2533221562 crossrefType "proceedings-article" @default.
- W2533221562 hasAuthorship W2533221562A5077959759 @default.
- W2533221562 hasConcept C111030470 @default.
- W2533221562 hasConcept C115961682 @default.
- W2533221562 hasConcept C117479156 @default.
- W2533221562 hasConcept C127413603 @default.
- W2533221562 hasConcept C138885662 @default.
- W2533221562 hasConcept C147176958 @default.
- W2533221562 hasConcept C153180895 @default.
- W2533221562 hasConcept C154945302 @default.
- W2533221562 hasConcept C27438332 @default.
- W2533221562 hasConcept C2776401178 @default.
- W2533221562 hasConcept C2777286243 @default.
- W2533221562 hasConcept C2994222927 @default.
- W2533221562 hasConcept C31972630 @default.
- W2533221562 hasConcept C33923547 @default.
- W2533221562 hasConcept C41008148 @default.
- W2533221562 hasConcept C41895202 @default.
- W2533221562 hasConcept C52622490 @default.
- W2533221562 hasConcept C63099799 @default.
- W2533221562 hasConcept C69738355 @default.
- W2533221562 hasConcept C70518039 @default.
- W2533221562 hasConcept C9417928 @default.
- W2533221562 hasConceptScore W2533221562C111030470 @default.
- W2533221562 hasConceptScore W2533221562C115961682 @default.
- W2533221562 hasConceptScore W2533221562C117479156 @default.
- W2533221562 hasConceptScore W2533221562C127413603 @default.
- W2533221562 hasConceptScore W2533221562C138885662 @default.
- W2533221562 hasConceptScore W2533221562C147176958 @default.
- W2533221562 hasConceptScore W2533221562C153180895 @default.
- W2533221562 hasConceptScore W2533221562C154945302 @default.
- W2533221562 hasConceptScore W2533221562C27438332 @default.
- W2533221562 hasConceptScore W2533221562C2776401178 @default.
- W2533221562 hasConceptScore W2533221562C2777286243 @default.
- W2533221562 hasConceptScore W2533221562C2994222927 @default.
- W2533221562 hasConceptScore W2533221562C31972630 @default.
- W2533221562 hasConceptScore W2533221562C33923547 @default.
- W2533221562 hasConceptScore W2533221562C41008148 @default.
- W2533221562 hasConceptScore W2533221562C41895202 @default.
- W2533221562 hasConceptScore W2533221562C52622490 @default.
- W2533221562 hasConceptScore W2533221562C63099799 @default.
- W2533221562 hasConceptScore W2533221562C69738355 @default.
- W2533221562 hasConceptScore W2533221562C70518039 @default.
- W2533221562 hasConceptScore W2533221562C9417928 @default.
- W2533221562 hasLocation W25332215621 @default.
- W2533221562 hasOpenAccess W2533221562 @default.
- W2533221562 hasPrimaryLocation W25332215621 @default.
- W2533221562 hasRelatedWork W1677378707 @default.
- W2533221562 hasRelatedWork W1756315871 @default.
- W2533221562 hasRelatedWork W2011753777 @default.
- W2533221562 hasRelatedWork W2105055468 @default.
- W2533221562 hasRelatedWork W2123759770 @default.
- W2533221562 hasRelatedWork W2158704926 @default.
- W2533221562 hasRelatedWork W2169311637 @default.
- W2533221562 hasRelatedWork W2373052636 @default.
- W2533221562 hasRelatedWork W3110687914 @default.
- W2533221562 hasRelatedWork W94476185 @default.
- W2533221562 isParatext "false" @default.
- W2533221562 isRetracted "false" @default.
- W2533221562 magId "2533221562" @default.
- W2533221562 workType "article" @default.