Matches in SemOpenAlex for { <https://semopenalex.org/work/W2533453047> ?p ?o ?g. }
- W2533453047 endingPage "153" @default.
- W2533453047 startingPage "134" @default.
- W2533453047 abstract "Evidence suggests that diatom photorespiratory metabolism is distinct from other photosynthetic eukaryotes in that there may be at least two routes for the metabolism of the photorespiratory metabolite glycolate. One occurs primarily in the mitochondria and is similar to the C2 photorespiratory pathway, and the other processes glycolate through the peroxisomal glyoxylate cycle. Genomic analysis has identified the presence of key genes required for glycolate oxidation, the glyoxylate cycle, and malate metabolism, however, predictions of intracellular localization can be ambiguous and require verification. This knowledge gap leads to uncertainties surrounding how these individual pathways operate, either together or independently, to process photorespiratory intermediates under different environmental conditions. Here, we combine in silico sequence analysis, in vivo protein localization techniques and gene expression patterns to investigate key enzymes potentially involved in photorespiratory metabolism in the model diatom Thalassiosira pseudonana. We demonstrate the peroxisomal localization of isocitrate lyase and the mitochondrial localization of malic enzyme and a glycolate oxidase. Based on these analyses, we propose an updated model for photorespiratory metabolism in T. pseudonana, as well as a mechanism by which C2 photorespiratory metabolism and its associated pathways may operate during silicon starvation and growth arrest." @default.
- W2533453047 created "2016-10-28" @default.
- W2533453047 creator A5012700497 @default.
- W2533453047 creator A5070931051 @default.
- W2533453047 creator A5071752690 @default.
- W2533453047 creator A5088804551 @default.
- W2533453047 date "2017-02-01" @default.
- W2533453047 modified "2023-10-14" @default.
- W2533453047 title "Clarification of Photorespiratory Processes and the Role of Malic Enzyme in Diatoms" @default.
- W2533453047 cites W1506284450 @default.
- W2533453047 cites W1532423416 @default.
- W2533453047 cites W1542285901 @default.
- W2533453047 cites W1583240815 @default.
- W2533453047 cites W1608456189 @default.
- W2533453047 cites W1780948013 @default.
- W2533453047 cites W1877250828 @default.
- W2533453047 cites W1892793244 @default.
- W2533453047 cites W1906974612 @default.
- W2533453047 cites W1964755850 @default.
- W2533453047 cites W1965711488 @default.
- W2533453047 cites W1968386517 @default.
- W2533453047 cites W1969352288 @default.
- W2533453047 cites W1975684232 @default.
- W2533453047 cites W1979637090 @default.
- W2533453047 cites W1986708961 @default.
- W2533453047 cites W1989441631 @default.
- W2533453047 cites W1991300740 @default.
- W2533453047 cites W2004448262 @default.
- W2533453047 cites W2014443494 @default.
- W2533453047 cites W2018267605 @default.
- W2533453047 cites W2021341670 @default.
- W2533453047 cites W2024474976 @default.
- W2533453047 cites W2031825843 @default.
- W2533453047 cites W2031825920 @default.
- W2533453047 cites W2037741253 @default.
- W2533453047 cites W2039172353 @default.
- W2533453047 cites W2045201138 @default.
- W2533453047 cites W2048889389 @default.
- W2533453047 cites W2049248278 @default.
- W2533453047 cites W2050886262 @default.
- W2533453047 cites W2053349248 @default.
- W2533453047 cites W2053974637 @default.
- W2533453047 cites W2057391546 @default.
- W2533453047 cites W2059014587 @default.
- W2533453047 cites W2060800168 @default.
- W2533453047 cites W2064500919 @default.
- W2533453047 cites W2066090048 @default.
- W2533453047 cites W2075693891 @default.
- W2533453047 cites W2076077839 @default.
- W2533453047 cites W2086096010 @default.
- W2533453047 cites W2089047063 @default.
- W2533453047 cites W2089661821 @default.
- W2533453047 cites W2092484347 @default.
- W2533453047 cites W2092600065 @default.
- W2533453047 cites W2100498403 @default.
- W2533453047 cites W2104130360 @default.
- W2533453047 cites W2105273086 @default.
- W2533453047 cites W2109972704 @default.
- W2533453047 cites W2110868527 @default.
- W2533453047 cites W2111211467 @default.
- W2533453047 cites W2111576828 @default.
- W2533453047 cites W2111979511 @default.
- W2533453047 cites W2113361509 @default.
- W2533453047 cites W2116806492 @default.
- W2533453047 cites W2117131162 @default.
- W2533453047 cites W2117555911 @default.
- W2533453047 cites W2119367591 @default.
- W2533453047 cites W2120790779 @default.
- W2533453047 cites W2124390857 @default.
- W2533453047 cites W2126973783 @default.
- W2533453047 cites W2127774996 @default.
- W2533453047 cites W2128580855 @default.
- W2533453047 cites W2128853761 @default.
- W2533453047 cites W2128880918 @default.
- W2533453047 cites W2129095580 @default.
- W2533453047 cites W2131571407 @default.
- W2533453047 cites W2136482257 @default.
- W2533453047 cites W2137391212 @default.
- W2533453047 cites W2137424160 @default.
- W2533453047 cites W2138902845 @default.
- W2533453047 cites W2139043703 @default.
- W2533453047 cites W2139958361 @default.
- W2533453047 cites W2140729960 @default.
- W2533453047 cites W2146797081 @default.
- W2533453047 cites W2147564520 @default.
- W2533453047 cites W2150090592 @default.
- W2533453047 cites W2152207030 @default.
- W2533453047 cites W2153063857 @default.
- W2533453047 cites W2154140763 @default.
- W2533453047 cites W2159308287 @default.
- W2533453047 cites W2161645441 @default.
- W2533453047 cites W2161746138 @default.
- W2533453047 cites W2165275212 @default.
- W2533453047 cites W2166537412 @default.
- W2533453047 cites W2170771286 @default.
- W2533453047 cites W2176134021 @default.
- W2533453047 cites W2282125997 @default.
- W2533453047 doi "https://doi.org/10.1016/j.protis.2016.10.005" @default.