Matches in SemOpenAlex for { <https://semopenalex.org/work/W2533962510> ?p ?o ?g. }
- W2533962510 endingPage "8" @default.
- W2533962510 startingPage "1" @default.
- W2533962510 abstract "In recent years, significant progress has been made in detecting text in scene images. However, most of state-of-the-art approaches can not work well when encountered blurred, low-resolution and small-sized texts. We consider many connected regions as candidates, which aim to capture character regions as many as possible. In this paper, we propose a novel method, which is based on exhaustive segmentation, to detect text in scene images. Firstly, we present a parallel structure to generate character candidate regions with the exhaustive segmentation of scene image. Secondly, a well-designed two-layer filtering method is used to filter out non-character candidate regions. Finally, at text line grouping stage, the edges of the fully connected graph of the remaining character candidate regions are cut by a support vector machine classifier. We use two public datasets, namely, ICDAR 2013 dataset and the Street View Text dataset to evaluate the performance of our method. Experimental results show that our method achieves excellent recall rate on these two public datasets, moreover, our method is robust to the blurred, low-resolution and small-sized texts." @default.
- W2533962510 created "2016-10-28" @default.
- W2533962510 creator A5023724461 @default.
- W2533962510 creator A5024908344 @default.
- W2533962510 creator A5044293662 @default.
- W2533962510 creator A5044459859 @default.
- W2533962510 creator A5047048001 @default.
- W2533962510 creator A5048353325 @default.
- W2533962510 date "2017-02-01" @default.
- W2533962510 modified "2023-10-03" @default.
- W2533962510 title "Text detection in scene images based on exhaustive segmentation" @default.
- W2533962510 cites W117491841 @default.
- W2533962510 cites W1488125194 @default.
- W2533962510 cites W1539000009 @default.
- W2533962510 cites W1555230242 @default.
- W2533962510 cites W1569614731 @default.
- W2533962510 cites W1599220855 @default.
- W2533962510 cites W1935817682 @default.
- W2533962510 cites W1966693245 @default.
- W2533962510 cites W1976382093 @default.
- W2533962510 cites W1988461287 @default.
- W2533962510 cites W1998042868 @default.
- W2533962510 cites W1998049905 @default.
- W2533962510 cites W1998384060 @default.
- W2533962510 cites W2008806374 @default.
- W2533962510 cites W2015787694 @default.
- W2533962510 cites W2017278151 @default.
- W2533962510 cites W2023415694 @default.
- W2533962510 cites W2024959534 @default.
- W2533962510 cites W2032355985 @default.
- W2533962510 cites W2038228855 @default.
- W2533962510 cites W2056518953 @default.
- W2533962510 cites W2061802763 @default.
- W2533962510 cites W2065613686 @default.
- W2533962510 cites W2078997308 @default.
- W2533962510 cites W2095536970 @default.
- W2533962510 cites W2095609079 @default.
- W2533962510 cites W2099247484 @default.
- W2533962510 cites W2105409451 @default.
- W2533962510 cites W2108193766 @default.
- W2533962510 cites W2124404372 @default.
- W2533962510 cites W2131163834 @default.
- W2533962510 cites W2131447359 @default.
- W2533962510 cites W2137718414 @default.
- W2533962510 cites W2142082467 @default.
- W2533962510 cites W2142159465 @default.
- W2533962510 cites W2144554289 @default.
- W2533962510 cites W2145023731 @default.
- W2533962510 cites W2148214126 @default.
- W2533962510 cites W2152235937 @default.
- W2533962510 cites W2158710217 @default.
- W2533962510 cites W2209763203 @default.
- W2533962510 cites W2344822769 @default.
- W2533962510 cites W4234755959 @default.
- W2533962510 doi "https://doi.org/10.1016/j.image.2016.10.003" @default.
- W2533962510 hasPublicationYear "2017" @default.
- W2533962510 type Work @default.
- W2533962510 sameAs 2533962510 @default.
- W2533962510 citedByCount "33" @default.
- W2533962510 countsByYear W25339625102017 @default.
- W2533962510 countsByYear W25339625102018 @default.
- W2533962510 countsByYear W25339625102019 @default.
- W2533962510 countsByYear W25339625102020 @default.
- W2533962510 countsByYear W25339625102021 @default.
- W2533962510 countsByYear W25339625102022 @default.
- W2533962510 countsByYear W25339625102023 @default.
- W2533962510 crossrefType "journal-article" @default.
- W2533962510 hasAuthorship W2533962510A5023724461 @default.
- W2533962510 hasAuthorship W2533962510A5024908344 @default.
- W2533962510 hasAuthorship W2533962510A5044293662 @default.
- W2533962510 hasAuthorship W2533962510A5044459859 @default.
- W2533962510 hasAuthorship W2533962510A5047048001 @default.
- W2533962510 hasAuthorship W2533962510A5048353325 @default.
- W2533962510 hasConcept C106131492 @default.
- W2533962510 hasConcept C12267149 @default.
- W2533962510 hasConcept C124504099 @default.
- W2533962510 hasConcept C132525143 @default.
- W2533962510 hasConcept C153180895 @default.
- W2533962510 hasConcept C154945302 @default.
- W2533962510 hasConcept C2524010 @default.
- W2533962510 hasConcept C2780861071 @default.
- W2533962510 hasConcept C2987098735 @default.
- W2533962510 hasConcept C31972630 @default.
- W2533962510 hasConcept C33923547 @default.
- W2533962510 hasConcept C41008148 @default.
- W2533962510 hasConcept C80444323 @default.
- W2533962510 hasConcept C81669768 @default.
- W2533962510 hasConcept C89600930 @default.
- W2533962510 hasConcept C95623464 @default.
- W2533962510 hasConceptScore W2533962510C106131492 @default.
- W2533962510 hasConceptScore W2533962510C12267149 @default.
- W2533962510 hasConceptScore W2533962510C124504099 @default.
- W2533962510 hasConceptScore W2533962510C132525143 @default.
- W2533962510 hasConceptScore W2533962510C153180895 @default.
- W2533962510 hasConceptScore W2533962510C154945302 @default.
- W2533962510 hasConceptScore W2533962510C2524010 @default.
- W2533962510 hasConceptScore W2533962510C2780861071 @default.
- W2533962510 hasConceptScore W2533962510C2987098735 @default.