Matches in SemOpenAlex for { <https://semopenalex.org/work/W2534118885> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2534118885 abstract "The most fundamental problem encountered in the field of stochastic optimization, is the Stochastic Root Finding (SRF) problem where the task is to locate an unknown point x* for which g(x*) = 0 for a given function g that can only be observed in the presence of noise [13]. The vast majority of the state-of-the-art solutions to the SRF problem involve the theory of stochastic approximation. The premise of the latter family of algorithms is to operate by means of so-called “small-step” processes that explore the search space in a conservative manner. Using this paradigm, the point investigated at any time instant is in the proximity of the point investigated at the previous time instant, rendering the convergence towards the optimal point, x*, to be sluggish. The unfortunate thing about such a search paradigm is that although g() contains information using which large sections of the search space can be eliminated, this information is unutilized. This paper provides a pioneering and novel scheme to discover and utilize this information. Our solution recursively shrinks the search space by, at least, a factor of 2d/3 at each epoch, where d ≥ 2 is a user-defined parameter of the algorithm. This enhances the convergence significantly. Conceptually, this is achieved through a subtle re-formulation of SRF problem in terms of a continuous-space generalization of the Stochastic Point Location (SPL) problem originally proposed by Oommen in [8]. Our scheme is based, in part, on the Continuous Point Location with Adaptive d-ary Search (CPL-AdS), originally presented in [12]. The solution to the CPL-AdS [12], however, is not applicable in our particular domain because of the inherent asymmetry of the SRF problem. Our solution invokes a CPL-AdS-like solution to partition the search interval into d subintervals, evaluates the location of the unknown root x* with respect to these sub-intervals using learning automata, and prunes the search space in each iteration by eliminating at least one partition. Our scheme, the CPL-AdS algorithm for SRF, denoted as SRF-AdS, is shown to converge to the unknown root x* with an arbitrary large degree of accuracy, i.e., with a probability as close to unity as desired. Unlike the classical formulation of the SPL problem proposed by Oommen et al [8], [12], in our setting, the probability, p, of the “environment” suggesting an accurate response is non-constant. In fact, the latter probability depends of the point x being examined and the region that is a candidate to be pruned. The fact that p is not constant renders the analysis much more involved than in [12]. The decision rules for pruning are also different from those encountered when p is constant [12]." @default.
- W2534118885 created "2016-10-28" @default.
- W2534118885 creator A5032770006 @default.
- W2534118885 creator A5055634885 @default.
- W2534118885 date "2015-12-01" @default.
- W2534118885 modified "2023-09-23" @default.
- W2534118885 title "Solving Stochastic Root-Finding with adaptive d-ary search" @default.
- W2534118885 cites W1499021337 @default.
- W2534118885 cites W1994616650 @default.
- W2534118885 cites W1996494912 @default.
- W2534118885 cites W2001012564 @default.
- W2534118885 cites W2009797711 @default.
- W2534118885 cites W2023413531 @default.
- W2534118885 cites W2030425071 @default.
- W2534118885 cites W2039427695 @default.
- W2534118885 cites W2064076655 @default.
- W2534118885 cites W2064398716 @default.
- W2534118885 cites W2094365833 @default.
- W2534118885 cites W2103537066 @default.
- W2534118885 cites W2108540055 @default.
- W2534118885 cites W2118017686 @default.
- W2534118885 cites W2138041254 @default.
- W2534118885 cites W2156623949 @default.
- W2534118885 cites W2157321916 @default.
- W2534118885 cites W3151970944 @default.
- W2534118885 doi "https://doi.org/10.1109/eais.2015.7368782" @default.
- W2534118885 hasPublicationYear "2015" @default.
- W2534118885 type Work @default.
- W2534118885 sameAs 2534118885 @default.
- W2534118885 citedByCount "1" @default.
- W2534118885 countsByYear W25341188852021 @default.
- W2534118885 crossrefType "proceedings-article" @default.
- W2534118885 hasAuthorship W2534118885A5032770006 @default.
- W2534118885 hasAuthorship W2534118885A5055634885 @default.
- W2534118885 hasBestOaLocation W25341188852 @default.
- W2534118885 hasConcept C11413529 @default.
- W2534118885 hasConcept C126255220 @default.
- W2534118885 hasConcept C134306372 @default.
- W2534118885 hasConcept C154945302 @default.
- W2534118885 hasConcept C162324750 @default.
- W2534118885 hasConcept C177148314 @default.
- W2534118885 hasConcept C205711294 @default.
- W2534118885 hasConcept C2524010 @default.
- W2534118885 hasConcept C2777303404 @default.
- W2534118885 hasConcept C28719098 @default.
- W2534118885 hasConcept C33923547 @default.
- W2534118885 hasConcept C41008148 @default.
- W2534118885 hasConcept C50522688 @default.
- W2534118885 hasConceptScore W2534118885C11413529 @default.
- W2534118885 hasConceptScore W2534118885C126255220 @default.
- W2534118885 hasConceptScore W2534118885C134306372 @default.
- W2534118885 hasConceptScore W2534118885C154945302 @default.
- W2534118885 hasConceptScore W2534118885C162324750 @default.
- W2534118885 hasConceptScore W2534118885C177148314 @default.
- W2534118885 hasConceptScore W2534118885C205711294 @default.
- W2534118885 hasConceptScore W2534118885C2524010 @default.
- W2534118885 hasConceptScore W2534118885C2777303404 @default.
- W2534118885 hasConceptScore W2534118885C28719098 @default.
- W2534118885 hasConceptScore W2534118885C33923547 @default.
- W2534118885 hasConceptScore W2534118885C41008148 @default.
- W2534118885 hasConceptScore W2534118885C50522688 @default.
- W2534118885 hasLocation W25341188851 @default.
- W2534118885 hasLocation W25341188852 @default.
- W2534118885 hasLocation W25341188853 @default.
- W2534118885 hasOpenAccess W2534118885 @default.
- W2534118885 hasPrimaryLocation W25341188851 @default.
- W2534118885 hasRelatedWork W1520299729 @default.
- W2534118885 hasRelatedWork W1593515020 @default.
- W2534118885 hasRelatedWork W2003685044 @default.
- W2534118885 hasRelatedWork W2008854809 @default.
- W2534118885 hasRelatedWork W2010363143 @default.
- W2534118885 hasRelatedWork W2042778897 @default.
- W2534118885 hasRelatedWork W2094472943 @default.
- W2534118885 hasRelatedWork W2115723277 @default.
- W2534118885 hasRelatedWork W2121811374 @default.
- W2534118885 hasRelatedWork W2133033455 @default.
- W2534118885 hasRelatedWork W2156623949 @default.
- W2534118885 hasRelatedWork W2181316235 @default.
- W2534118885 hasRelatedWork W2226102612 @default.
- W2534118885 hasRelatedWork W2586263190 @default.
- W2534118885 hasRelatedWork W2593052414 @default.
- W2534118885 hasRelatedWork W2612772367 @default.
- W2534118885 hasRelatedWork W3092776912 @default.
- W2534118885 hasRelatedWork W3214306075 @default.
- W2534118885 hasRelatedWork W63012209 @default.
- W2534118885 hasRelatedWork W2468862862 @default.
- W2534118885 isParatext "false" @default.
- W2534118885 isRetracted "false" @default.
- W2534118885 magId "2534118885" @default.
- W2534118885 workType "article" @default.