Matches in SemOpenAlex for { <https://semopenalex.org/work/W2534437496> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2534437496 endingPage "1869" @default.
- W2534437496 startingPage "1865" @default.
- W2534437496 abstract "Hidden Markov fields have been extensively applied in the field of synthetic aperture radar (SAR) image processing, mainly for segmentation and change detection. In such models, the hidden process of interest $X$ is assumed to be a Markov field that is to be searched from an observable process $Y$ . The possibility of such estimation lies, however, on several assumptions that turn out to be unsuitable for many natural systems. These models have then been extended in many directions, leading to triplet Markov fields among other extensions. A link has then been established between these models and the theory of evidence, opening new possibilities of uncertainty modeling and information fusion. The aim of this letter is to further generalize the hidden evidential Markov field (EMF) to consider more general forms of noise with application to unsupervised segmentation of SAR images. For parameters estimation, we use iterative conditional estimation, whereas maximization is performed through iterative conditional mode. The performance of the proposed model is assessed against the original EMF on real SAR images." @default.
- W2534437496 created "2016-10-28" @default.
- W2534437496 creator A5015284052 @default.
- W2534437496 creator A5051275250 @default.
- W2534437496 creator A5062348685 @default.
- W2534437496 date "2016-12-01" @default.
- W2534437496 modified "2023-10-13" @default.
- W2534437496 title "Unsupervised Segmentation of SAR Images Using Gaussian Mixture-Hidden Evidential Markov Fields" @default.
- W2534437496 cites W1554544485 @default.
- W2534437496 cites W1799946925 @default.
- W2534437496 cites W1978549312 @default.
- W2534437496 cites W1991489044 @default.
- W2534437496 cites W2020999234 @default.
- W2534437496 cites W2044016190 @default.
- W2534437496 cites W2047289812 @default.
- W2534437496 cites W2066843515 @default.
- W2534437496 cites W2069819610 @default.
- W2534437496 cites W2113799356 @default.
- W2534437496 cites W2114220616 @default.
- W2534437496 cites W2116212047 @default.
- W2534437496 cites W2116742812 @default.
- W2534437496 cites W2123905752 @default.
- W2534437496 cites W2127151297 @default.
- W2534437496 cites W2136573752 @default.
- W2534437496 cites W2149396887 @default.
- W2534437496 cites W2153910388 @default.
- W2534437496 cites W2161855224 @default.
- W2534437496 cites W2166576599 @default.
- W2534437496 cites W2170622722 @default.
- W2534437496 cites W2314662495 @default.
- W2534437496 cites W2314800511 @default.
- W2534437496 cites W2316226477 @default.
- W2534437496 cites W4301347335 @default.
- W2534437496 doi "https://doi.org/10.1109/lgrs.2016.2615647" @default.
- W2534437496 hasPublicationYear "2016" @default.
- W2534437496 type Work @default.
- W2534437496 sameAs 2534437496 @default.
- W2534437496 citedByCount "10" @default.
- W2534437496 countsByYear W25344374962017 @default.
- W2534437496 countsByYear W25344374962018 @default.
- W2534437496 countsByYear W25344374962019 @default.
- W2534437496 countsByYear W25344374962020 @default.
- W2534437496 countsByYear W25344374962021 @default.
- W2534437496 crossrefType "journal-article" @default.
- W2534437496 hasAuthorship W2534437496A5015284052 @default.
- W2534437496 hasAuthorship W2534437496A5051275250 @default.
- W2534437496 hasAuthorship W2534437496A5062348685 @default.
- W2534437496 hasConcept C121332964 @default.
- W2534437496 hasConcept C124504099 @default.
- W2534437496 hasConcept C153180895 @default.
- W2534437496 hasConcept C154945302 @default.
- W2534437496 hasConcept C163716315 @default.
- W2534437496 hasConcept C23224414 @default.
- W2534437496 hasConcept C31972630 @default.
- W2534437496 hasConcept C41008148 @default.
- W2534437496 hasConcept C61224824 @default.
- W2534437496 hasConcept C62520636 @default.
- W2534437496 hasConcept C87360688 @default.
- W2534437496 hasConcept C89600930 @default.
- W2534437496 hasConceptScore W2534437496C121332964 @default.
- W2534437496 hasConceptScore W2534437496C124504099 @default.
- W2534437496 hasConceptScore W2534437496C153180895 @default.
- W2534437496 hasConceptScore W2534437496C154945302 @default.
- W2534437496 hasConceptScore W2534437496C163716315 @default.
- W2534437496 hasConceptScore W2534437496C23224414 @default.
- W2534437496 hasConceptScore W2534437496C31972630 @default.
- W2534437496 hasConceptScore W2534437496C41008148 @default.
- W2534437496 hasConceptScore W2534437496C61224824 @default.
- W2534437496 hasConceptScore W2534437496C62520636 @default.
- W2534437496 hasConceptScore W2534437496C87360688 @default.
- W2534437496 hasConceptScore W2534437496C89600930 @default.
- W2534437496 hasIssue "12" @default.
- W2534437496 hasLocation W25344374961 @default.
- W2534437496 hasLocation W25344374962 @default.
- W2534437496 hasOpenAccess W2534437496 @default.
- W2534437496 hasPrimaryLocation W25344374961 @default.
- W2534437496 hasRelatedWork W1507687735 @default.
- W2534437496 hasRelatedWork W1631910785 @default.
- W2534437496 hasRelatedWork W1669643531 @default.
- W2534437496 hasRelatedWork W1721780360 @default.
- W2534437496 hasRelatedWork W2110230079 @default.
- W2534437496 hasRelatedWork W2117664411 @default.
- W2534437496 hasRelatedWork W2117933325 @default.
- W2534437496 hasRelatedWork W2122581818 @default.
- W2534437496 hasRelatedWork W2159066190 @default.
- W2534437496 hasRelatedWork W2739874619 @default.
- W2534437496 hasVolume "13" @default.
- W2534437496 isParatext "false" @default.
- W2534437496 isRetracted "false" @default.
- W2534437496 magId "2534437496" @default.
- W2534437496 workType "article" @default.