Matches in SemOpenAlex for { <https://semopenalex.org/work/W2534673534> ?p ?o ?g. }
- W2534673534 abstract "Anomaly detection is a hot research field in the area of machine learning and data mining. The current outlier mining approaches which are based on the distance or the nearest neighbor are resulted in too long operation time results when using for the high-dimensional and massive data. Many improvements have been proposed to improve the results of the algorithms, but not yet satisfy the demand of the increasing data, the detection is ineffective. So, this paper presents a biased sampling-based of density anomaly detection algorithm. Firstly, In order to avoid complex kernel function estimation and integration, we divide the data set as grids and use the number of data points in the grid as an approximate density. In order to achieve the purpose of reducing the complexity of calculating the divided cluster, we use the hash table method to map the grid to the hash table unit while calculate the number of data points. After that we roll-up the neighbor grids which has the similar density in local and then calculate the approximate density of the combined data clusters. Next we use the probability-based biased sampling method to detect the data required detection to have a subset; then we use the method based on the density of local outlier detection to calculate the abnormal factor of each object in the subset. Because of using the biased sampling data, the abnormal factor both local outlier factor and global outlier factor; after we have the abnormal factor of each object in the subset, the higher the score of the point is, the higher the degree of outliers. The experiments on various artificial and real-life data sets confirm that, compared with the previous related methods, our method has better accuracy, scalability, and more efficient computation." @default.
- W2534673534 created "2016-10-28" @default.
- W2534673534 creator A5007279513 @default.
- W2534673534 creator A5068951778 @default.
- W2534673534 date "2016-08-01" @default.
- W2534673534 modified "2023-09-25" @default.
- W2534673534 title "Biased-sampling of density-based local outlier detection algorithm" @default.
- W2534673534 cites W1552339598 @default.
- W2534673534 cites W1584412742 @default.
- W2534673534 cites W1986332411 @default.
- W2534673534 cites W2049058890 @default.
- W2534673534 cites W2061710780 @default.
- W2534673534 cites W2110784166 @default.
- W2534673534 cites W2113060550 @default.
- W2534673534 cites W2117618130 @default.
- W2534673534 cites W2117839996 @default.
- W2534673534 cites W2131687179 @default.
- W2534673534 cites W2132449179 @default.
- W2534673534 cites W2133350412 @default.
- W2534673534 cites W2136495567 @default.
- W2534673534 cites W2144182447 @default.
- W2534673534 cites W2153207204 @default.
- W2534673534 cites W2170651405 @default.
- W2534673534 cites W2383218741 @default.
- W2534673534 cites W3006652012 @default.
- W2534673534 cites W3120740533 @default.
- W2534673534 doi "https://doi.org/10.1109/fskd.2016.7603357" @default.
- W2534673534 hasPublicationYear "2016" @default.
- W2534673534 type Work @default.
- W2534673534 sameAs 2534673534 @default.
- W2534673534 citedByCount "5" @default.
- W2534673534 countsByYear W25346735342017 @default.
- W2534673534 countsByYear W25346735342018 @default.
- W2534673534 countsByYear W25346735342019 @default.
- W2534673534 countsByYear W25346735342020 @default.
- W2534673534 crossrefType "proceedings-article" @default.
- W2534673534 hasAuthorship W2534673534A5007279513 @default.
- W2534673534 hasAuthorship W2534673534A5068951778 @default.
- W2534673534 hasConcept C105795698 @default.
- W2534673534 hasConcept C106131492 @default.
- W2534673534 hasConcept C113238511 @default.
- W2534673534 hasConcept C11413529 @default.
- W2534673534 hasConcept C114614502 @default.
- W2534673534 hasConcept C124101348 @default.
- W2534673534 hasConcept C140779682 @default.
- W2534673534 hasConcept C153180895 @default.
- W2534673534 hasConcept C154945302 @default.
- W2534673534 hasConcept C169029474 @default.
- W2534673534 hasConcept C185429906 @default.
- W2534673534 hasConcept C187691185 @default.
- W2534673534 hasConcept C2524010 @default.
- W2534673534 hasConcept C31972630 @default.
- W2534673534 hasConcept C33923547 @default.
- W2534673534 hasConcept C38652104 @default.
- W2534673534 hasConcept C41008148 @default.
- W2534673534 hasConcept C58489278 @default.
- W2534673534 hasConcept C67388219 @default.
- W2534673534 hasConcept C71134354 @default.
- W2534673534 hasConcept C739882 @default.
- W2534673534 hasConcept C74193536 @default.
- W2534673534 hasConcept C79337645 @default.
- W2534673534 hasConcept C99138194 @default.
- W2534673534 hasConceptScore W2534673534C105795698 @default.
- W2534673534 hasConceptScore W2534673534C106131492 @default.
- W2534673534 hasConceptScore W2534673534C113238511 @default.
- W2534673534 hasConceptScore W2534673534C11413529 @default.
- W2534673534 hasConceptScore W2534673534C114614502 @default.
- W2534673534 hasConceptScore W2534673534C124101348 @default.
- W2534673534 hasConceptScore W2534673534C140779682 @default.
- W2534673534 hasConceptScore W2534673534C153180895 @default.
- W2534673534 hasConceptScore W2534673534C154945302 @default.
- W2534673534 hasConceptScore W2534673534C169029474 @default.
- W2534673534 hasConceptScore W2534673534C185429906 @default.
- W2534673534 hasConceptScore W2534673534C187691185 @default.
- W2534673534 hasConceptScore W2534673534C2524010 @default.
- W2534673534 hasConceptScore W2534673534C31972630 @default.
- W2534673534 hasConceptScore W2534673534C33923547 @default.
- W2534673534 hasConceptScore W2534673534C38652104 @default.
- W2534673534 hasConceptScore W2534673534C41008148 @default.
- W2534673534 hasConceptScore W2534673534C58489278 @default.
- W2534673534 hasConceptScore W2534673534C67388219 @default.
- W2534673534 hasConceptScore W2534673534C71134354 @default.
- W2534673534 hasConceptScore W2534673534C739882 @default.
- W2534673534 hasConceptScore W2534673534C74193536 @default.
- W2534673534 hasConceptScore W2534673534C79337645 @default.
- W2534673534 hasConceptScore W2534673534C99138194 @default.
- W2534673534 hasLocation W25346735341 @default.
- W2534673534 hasOpenAccess W2534673534 @default.
- W2534673534 hasPrimaryLocation W25346735341 @default.
- W2534673534 hasRelatedWork W1616516658 @default.
- W2534673534 hasRelatedWork W2033591587 @default.
- W2534673534 hasRelatedWork W2041559880 @default.
- W2534673534 hasRelatedWork W2052383602 @default.
- W2534673534 hasRelatedWork W2076445262 @default.
- W2534673534 hasRelatedWork W2128050080 @default.
- W2534673534 hasRelatedWork W2130880600 @default.
- W2534673534 hasRelatedWork W2154474172 @default.
- W2534673534 hasRelatedWork W2160777584 @default.
- W2534673534 hasRelatedWork W2186723458 @default.
- W2534673534 hasRelatedWork W2388891296 @default.