Matches in SemOpenAlex for { <https://semopenalex.org/work/W2534764918> ?p ?o ?g. }
- W2534764918 endingPage "616" @default.
- W2534764918 startingPage "609" @default.
- W2534764918 abstract "A great investment has been done in the last decades in the development of numerical and qualitative assessment methods to classify the ecological quality of water bodies. Yet, in spite of all attempts to avoid subjectivity, expert judgment is still used at numerous steps of the ecological classification and is considered by some authors as indispensible for management purposes. Thus, the aim of this study is to test the hypothesis that expert judgment, when done by the adequate experts (limnologists/river ecologist) with experience in the study area (i.e., natural conditions and expected communities), could be as good as quantitative indices and measures (i.e., result in the same classification), but quicker and with lower cost. For that we compared the classifications (on 13 aspects of rivers ecosystems) attributed by two experts to 20 sites (10 each) located in their study areas, with the classifications of ecological quality based on biological indices (for invertebrates and diatoms), hydromorphology and water chemistry, calculated by an independent team. Our results show that assessments made by experts and those calculated through indices (biological quality and hydromorphology) are globally very similar (RELATE test; Rho = 0.442; p < 0.001, 999 permutations). Most differences were of one class and experts tended to attribute a better condition than indices to the best quality sites but a worse condition to the worse quality sites. A Principal Components Analysis revealed that sites to which experts attributed a moderate quality had higher nitrate concentration and pH but were well oxygenated. The sites classified as poor and bad where those with stronger modifications in their habitats (given by the higher values of HMS). The difference between experts and indices is small but still represents 15% of sites, and includes both situations: the experts or the indices lead to the need of measures (i.e., classifications below class Good). Experts' evaluations on hydromorphological conditions of the channel and margins are also significantly correlated with the quality assessments made by the field team that has no experience in the study area (Rh0 = 0.518; p = 0.001; 999 permutation), indicating geographic independence in the expert judgment. We concluded that expert judgment could be used in the determination of streams and rivers ecological quality, saving money and time and helping to redirect monitoring funds to actual implementation of restoration measures. Yet, classification’ scoring methods may still be useful for a better targeting of restoration measures." @default.
- W2534764918 created "2016-10-28" @default.
- W2534764918 creator A5013599312 @default.
- W2534764918 creator A5028258098 @default.
- W2534764918 creator A5032936395 @default.
- W2534764918 creator A5037776083 @default.
- W2534764918 creator A5040920613 @default.
- W2534764918 creator A5056569236 @default.
- W2534764918 creator A5066255387 @default.
- W2534764918 date "2016-12-01" @default.
- W2534764918 modified "2023-09-30" @default.
- W2534764918 title "The paradox of expert judgment in rivers ecological monitoring" @default.
- W2534764918 cites W1930355953 @default.
- W2534764918 cites W1963582074 @default.
- W2534764918 cites W1972941153 @default.
- W2534764918 cites W1974951327 @default.
- W2534764918 cites W1978548769 @default.
- W2534764918 cites W1981315767 @default.
- W2534764918 cites W1982449013 @default.
- W2534764918 cites W1982848561 @default.
- W2534764918 cites W1985925500 @default.
- W2534764918 cites W1986264309 @default.
- W2534764918 cites W1987247310 @default.
- W2534764918 cites W1990144679 @default.
- W2534764918 cites W1999604224 @default.
- W2534764918 cites W2002999984 @default.
- W2534764918 cites W2009784093 @default.
- W2534764918 cites W2010159830 @default.
- W2534764918 cites W2021541156 @default.
- W2534764918 cites W2027985729 @default.
- W2534764918 cites W2038636973 @default.
- W2534764918 cites W2041381073 @default.
- W2534764918 cites W2044124292 @default.
- W2534764918 cites W2053708987 @default.
- W2534764918 cites W2073545711 @default.
- W2534764918 cites W2075804596 @default.
- W2534764918 cites W2097204237 @default.
- W2534764918 cites W2110813565 @default.
- W2534764918 cites W2112070508 @default.
- W2534764918 cites W2120195893 @default.
- W2534764918 cites W2126971895 @default.
- W2534764918 cites W2127107130 @default.
- W2534764918 cites W2129476113 @default.
- W2534764918 cites W2134577809 @default.
- W2534764918 cites W2310103122 @default.
- W2534764918 cites W2977401908 @default.
- W2534764918 doi "https://doi.org/10.1016/j.jenvman.2016.10.004" @default.
- W2534764918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27784580" @default.
- W2534764918 hasPublicationYear "2016" @default.
- W2534764918 type Work @default.
- W2534764918 sameAs 2534764918 @default.
- W2534764918 citedByCount "15" @default.
- W2534764918 countsByYear W25347649182017 @default.
- W2534764918 countsByYear W25347649182018 @default.
- W2534764918 countsByYear W25347649182019 @default.
- W2534764918 countsByYear W25347649182020 @default.
- W2534764918 countsByYear W25347649182021 @default.
- W2534764918 countsByYear W25347649182022 @default.
- W2534764918 countsByYear W25347649182023 @default.
- W2534764918 crossrefType "journal-article" @default.
- W2534764918 hasAuthorship W2534764918A5013599312 @default.
- W2534764918 hasAuthorship W2534764918A5028258098 @default.
- W2534764918 hasAuthorship W2534764918A5032936395 @default.
- W2534764918 hasAuthorship W2534764918A5037776083 @default.
- W2534764918 hasAuthorship W2534764918A5040920613 @default.
- W2534764918 hasAuthorship W2534764918A5056569236 @default.
- W2534764918 hasAuthorship W2534764918A5066255387 @default.
- W2534764918 hasConcept C107826830 @default.
- W2534764918 hasConcept C111472728 @default.
- W2534764918 hasConcept C111919701 @default.
- W2534764918 hasConcept C13474642 @default.
- W2534764918 hasConcept C138885662 @default.
- W2534764918 hasConcept C144559511 @default.
- W2534764918 hasConcept C166957645 @default.
- W2534764918 hasConcept C18903297 @default.
- W2534764918 hasConcept C205649164 @default.
- W2534764918 hasConcept C2776608160 @default.
- W2534764918 hasConcept C2777267654 @default.
- W2534764918 hasConcept C2779530757 @default.
- W2534764918 hasConcept C2780797713 @default.
- W2534764918 hasConcept C39432304 @default.
- W2534764918 hasConcept C41008148 @default.
- W2534764918 hasConcept C86803240 @default.
- W2534764918 hasConceptScore W2534764918C107826830 @default.
- W2534764918 hasConceptScore W2534764918C111472728 @default.
- W2534764918 hasConceptScore W2534764918C111919701 @default.
- W2534764918 hasConceptScore W2534764918C13474642 @default.
- W2534764918 hasConceptScore W2534764918C138885662 @default.
- W2534764918 hasConceptScore W2534764918C144559511 @default.
- W2534764918 hasConceptScore W2534764918C166957645 @default.
- W2534764918 hasConceptScore W2534764918C18903297 @default.
- W2534764918 hasConceptScore W2534764918C205649164 @default.
- W2534764918 hasConceptScore W2534764918C2776608160 @default.
- W2534764918 hasConceptScore W2534764918C2777267654 @default.
- W2534764918 hasConceptScore W2534764918C2779530757 @default.
- W2534764918 hasConceptScore W2534764918C2780797713 @default.
- W2534764918 hasConceptScore W2534764918C39432304 @default.
- W2534764918 hasConceptScore W2534764918C41008148 @default.