Matches in SemOpenAlex for { <https://semopenalex.org/work/W2534888907> ?p ?o ?g. }
- W2534888907 endingPage "2434" @default.
- W2534888907 startingPage "2424" @default.
- W2534888907 abstract "All-polymer solar cells (all-PSCs), consisting of conjugated polymers as both electron donor (PD) and acceptor (PA), have recently attracted great attention. Remarkable progress has been achieved during the past few years, with power conversion efficiencies (PCEs) now approaching 8%. In this Account, we first discuss the major advantages of all-PSCs over fullerene-polymer solar cells (fullerene-PSCs): (i) high light absorption and chemical tunability of PA, which affords simultaneous enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC), and (ii) superior long-term stability (in particular, thermal and mechanical stability) of all-PSCs due to entangled long PA chains. In the second part of this Account, we discuss the device operation mechanism of all-PSCs and recognize the major challenges that need to be addressed in optimizing the performance of all-PSCs. The major difference between all-PSCs and fullerene-PSCs originates from the molecular structures and interactions, i.e., the electron transport ability in all-PSCs is significantly affected by the packing geometry of two-dimensional PA chains relative to the electrodes (e.g., face-on or edge-on orientation), whereas spherically shaped fullerene acceptors can facilitate isotropic electron transport properties in fullerene-PSCs. Moreover, the crystalline packing structures of PD and PA at the PD-PA interface greatly affect their free charge carrier generation efficiencies. The design of PA polymers (e.g., main backbone, side chain, and molecular weight) should therefore take account of optimizing three major aspects in all-PSCs: (1) the electron transport ability of PA, (2) the molecular packing structure and orientation of PA, and (3) the blend morphology. First, control of the backbone and side-chain structures, as well as the molecular weight, is critical for generating strong intermolecular assembly of PA and its network, thus enabling high electron transport ability of PA comparable to that of fullerenes. Second, the molecular orientation of anisotropically structured PA should be favorably controlled in order to achieve efficient charge transport as well as charge transfer at the PD-PA interface. For instance, face-to-face stacking between PD and PA at the interface is desired for efficient free charge carrier generation because misoriented chains often cause an additional energy barrier for overcoming the binding energy of the charge transfer state. Third, large-scale phase separation often occurs in all-PSCs because of the significantly reduced entropic contribution by two macromolecular chains of PD and PA that energetically disfavors mixing. In this Account, we review the recent progress toward overcoming each recognized challenge and intend to provide guidelines for the future design of PA. We believe that by optimization of the parameters discussed above the PCE values of all-PSCs will surpass the 10% level in the near future and that all-PSCs are promising candidates for the successful realization of flexible and portable power generators." @default.
- W2534888907 created "2016-10-28" @default.
- W2534888907 creator A5007907467 @default.
- W2534888907 creator A5010581614 @default.
- W2534888907 creator A5020219394 @default.
- W2534888907 creator A5039037380 @default.
- W2534888907 creator A5057610183 @default.
- W2534888907 creator A5087071976 @default.
- W2534888907 date "2016-10-18" @default.
- W2534888907 modified "2023-10-17" @default.
- W2534888907 title "From Fullerene–Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control" @default.
- W2534888907 cites W1919201962 @default.
- W2534888907 cites W1964610771 @default.
- W2534888907 cites W1970065510 @default.
- W2534888907 cites W1979162682 @default.
- W2534888907 cites W1981217546 @default.
- W2534888907 cites W1981934547 @default.
- W2534888907 cites W1984066714 @default.
- W2534888907 cites W2005306164 @default.
- W2534888907 cites W2008644269 @default.
- W2534888907 cites W2009427291 @default.
- W2534888907 cites W2024942208 @default.
- W2534888907 cites W2049382993 @default.
- W2534888907 cites W2051684812 @default.
- W2534888907 cites W2068839774 @default.
- W2534888907 cites W2069864730 @default.
- W2534888907 cites W2073126198 @default.
- W2534888907 cites W2082019533 @default.
- W2534888907 cites W2084574448 @default.
- W2534888907 cites W2086388162 @default.
- W2534888907 cites W2088500444 @default.
- W2534888907 cites W2091344253 @default.
- W2534888907 cites W2093549529 @default.
- W2534888907 cites W2102409868 @default.
- W2534888907 cites W2105751718 @default.
- W2534888907 cites W2109260277 @default.
- W2534888907 cites W2118113686 @default.
- W2534888907 cites W2149930196 @default.
- W2534888907 cites W2169047508 @default.
- W2534888907 cites W2173608668 @default.
- W2534888907 cites W2195819806 @default.
- W2534888907 cites W2200718820 @default.
- W2534888907 cites W2216824971 @default.
- W2534888907 cites W2257390989 @default.
- W2534888907 cites W2276931651 @default.
- W2534888907 cites W2280957227 @default.
- W2534888907 cites W2288936632 @default.
- W2534888907 cites W2307351923 @default.
- W2534888907 cites W2312476670 @default.
- W2534888907 cites W2317025738 @default.
- W2534888907 cites W2317176089 @default.
- W2534888907 cites W2323662954 @default.
- W2534888907 cites W2324870620 @default.
- W2534888907 cites W2325901074 @default.
- W2534888907 cites W2328456083 @default.
- W2534888907 cites W2333451681 @default.
- W2534888907 cites W2335457367 @default.
- W2534888907 cites W2384540119 @default.
- W2534888907 cites W2409596518 @default.
- W2534888907 cites W2419613619 @default.
- W2534888907 cites W2499946727 @default.
- W2534888907 cites W2524117388 @default.
- W2534888907 doi "https://doi.org/10.1021/acs.accounts.6b00347" @default.
- W2534888907 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27753477" @default.
- W2534888907 hasPublicationYear "2016" @default.
- W2534888907 type Work @default.
- W2534888907 sameAs 2534888907 @default.
- W2534888907 citedByCount "395" @default.
- W2534888907 countsByYear W25348889072017 @default.
- W2534888907 countsByYear W25348889072018 @default.
- W2534888907 countsByYear W25348889072019 @default.
- W2534888907 countsByYear W25348889072020 @default.
- W2534888907 countsByYear W25348889072021 @default.
- W2534888907 countsByYear W25348889072022 @default.
- W2534888907 countsByYear W25348889072023 @default.
- W2534888907 crossrefType "journal-article" @default.
- W2534888907 hasAuthorship W2534888907A5007907467 @default.
- W2534888907 hasAuthorship W2534888907A5010581614 @default.
- W2534888907 hasAuthorship W2534888907A5020219394 @default.
- W2534888907 hasAuthorship W2534888907A5039037380 @default.
- W2534888907 hasAuthorship W2534888907A5057610183 @default.
- W2534888907 hasAuthorship W2534888907A5087071976 @default.
- W2534888907 hasConcept C112613896 @default.
- W2534888907 hasConcept C121332964 @default.
- W2534888907 hasConcept C127413603 @default.
- W2534888907 hasConcept C159467904 @default.
- W2534888907 hasConcept C159985019 @default.
- W2534888907 hasConcept C162862793 @default.
- W2534888907 hasConcept C171250308 @default.
- W2534888907 hasConcept C178790620 @default.
- W2534888907 hasConcept C185592680 @default.
- W2534888907 hasConcept C192562407 @default.
- W2534888907 hasConcept C206991015 @default.
- W2534888907 hasConcept C26873012 @default.
- W2534888907 hasConcept C2779892579 @default.
- W2534888907 hasConcept C2900893 @default.
- W2534888907 hasConcept C42360764 @default.
- W2534888907 hasConcept C49040817 @default.