Matches in SemOpenAlex for { <https://semopenalex.org/work/W2535318038> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2535318038 abstract "Irregular wave dynamic analysis is an extremely computational expensive process on flexible pipes design. One emerging method that aims to reduce these computational costs is the hybrid methodology that combines Finite Element Analyses (FEA) and Artificial Neural Network (ANN). The proposed hybrid methodology aims to predict flexible pipe tension and curvatures in the bend stiffener region. Firstly using short FEA simulations to train the ANN, and then using only the ANN and the prescribed floater motions to get the rest of the response histories. Two approaches are developed with respect to the training data. One uses an ANN for each sea state in the wave scatter diagram and the other develops an ANN for each wave incidence direction. In order to evaluate the accuracy of the proposed approaches, a local analysis is applied, based on the predicted tension and curvatures, to calculate stresses in tension armour wires and the corresponding flexible pipe fatigue lifes. The results are compared to those from full nonlinear FEM simulation." @default.
- W2535318038 created "2016-10-28" @default.
- W2535318038 creator A5025557288 @default.
- W2535318038 creator A5072951490 @default.
- W2535318038 creator A5089454009 @default.
- W2535318038 date "2016-06-19" @default.
- W2535318038 modified "2023-09-24" @default.
- W2535318038 title "Optimization of Flexible Pipes Dynamic Analysis Using Artificial Neural Networks" @default.
- W2535318038 doi "https://doi.org/10.1115/omae2016-54949" @default.
- W2535318038 hasPublicationYear "2016" @default.
- W2535318038 type Work @default.
- W2535318038 sameAs 2535318038 @default.
- W2535318038 citedByCount "2" @default.
- W2535318038 countsByYear W25353180382018 @default.
- W2535318038 countsByYear W25353180382020 @default.
- W2535318038 crossrefType "proceedings-article" @default.
- W2535318038 hasAuthorship W2535318038A5025557288 @default.
- W2535318038 hasAuthorship W2535318038A5072951490 @default.
- W2535318038 hasAuthorship W2535318038A5089454009 @default.
- W2535318038 hasConcept C154945302 @default.
- W2535318038 hasConcept C41008148 @default.
- W2535318038 hasConcept C50644808 @default.
- W2535318038 hasConceptScore W2535318038C154945302 @default.
- W2535318038 hasConceptScore W2535318038C41008148 @default.
- W2535318038 hasConceptScore W2535318038C50644808 @default.
- W2535318038 hasLocation W25353180381 @default.
- W2535318038 hasOpenAccess W2535318038 @default.
- W2535318038 hasPrimaryLocation W25353180381 @default.
- W2535318038 hasRelatedWork W1499131166 @default.
- W2535318038 hasRelatedWork W1971043579 @default.
- W2535318038 hasRelatedWork W1981777939 @default.
- W2535318038 hasRelatedWork W1982754808 @default.
- W2535318038 hasRelatedWork W1995915071 @default.
- W2535318038 hasRelatedWork W2031870791 @default.
- W2535318038 hasRelatedWork W2041752169 @default.
- W2535318038 hasRelatedWork W2068709173 @default.
- W2535318038 hasRelatedWork W2110349507 @default.
- W2535318038 hasRelatedWork W2208438651 @default.
- W2535318038 hasRelatedWork W2473503101 @default.
- W2535318038 hasRelatedWork W2978678060 @default.
- W2535318038 hasRelatedWork W2994517414 @default.
- W2535318038 hasRelatedWork W3040179691 @default.
- W2535318038 hasRelatedWork W3090796610 @default.
- W2535318038 hasRelatedWork W3180505870 @default.
- W2535318038 hasRelatedWork W3206362475 @default.
- W2535318038 hasRelatedWork W58811099 @default.
- W2535318038 hasRelatedWork W2143539858 @default.
- W2535318038 hasRelatedWork W3095642926 @default.
- W2535318038 isParatext "false" @default.
- W2535318038 isRetracted "false" @default.
- W2535318038 magId "2535318038" @default.
- W2535318038 workType "article" @default.