Matches in SemOpenAlex for { <https://semopenalex.org/work/W2537125286> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2537125286 endingPage "225" @default.
- W2537125286 startingPage "220" @default.
- W2537125286 abstract "Most research efforts in gearbox fault diagnosis thus far have focused on diagnosing gearbox faults under stationary conditions. Efforts in diagnosing gearbox faults under non-stationary conditions have mostly involved an analysis of gearbox vibration signals under the speed-up or run-down processes. This paper attempts to diagnose faults in a single stage spur gearbox under non stationary conditions arising from fluctuating loads at the output of gearbox. The vibration signal corresponding to each independent revolution is synchronized from the revolution point of view by converting into the angular domain. This is accomplished experimentally by a simple process referred to as the independent angular re-sampling (IAR) technique. The IAR technique is accomplished by employing a multiple pulse tachometer arrangement. Through the IAR process, non-stationary signals in the time domain are converted into quasi-stationary signals in the angular domain. The angular domain signals, each representing one revolution of the gearbox drive shaft, are then decomposed with continuous wavelet transform. Optimal scales are identified based on superior energy-Shannon's entropy ratio of continuous wavelet coefficients (CWCs). The classification accuracy of a multilayer perceptron neural network is compared when CWCs from all scales and when CWCs from the optimal scales are fed to the neural network." @default.
- W2537125286 created "2016-10-28" @default.
- W2537125286 creator A5035434927 @default.
- W2537125286 creator A5066572860 @default.
- W2537125286 date "2017-03-01" @default.
- W2537125286 modified "2023-10-17" @default.
- W2537125286 title "Gearbox fault diagnosis under fluctuating load conditions with independent angular re‐sampling technique, continuous wavelet transform and multilayer perceptron neural network" @default.
- W2537125286 cites W1985310528 @default.
- W2537125286 cites W2011296483 @default.
- W2537125286 cites W2050018615 @default.
- W2537125286 cites W2064739731 @default.
- W2537125286 cites W2074724805 @default.
- W2537125286 cites W2096045964 @default.
- W2537125286 cites W2766023767 @default.
- W2537125286 cites W4241257111 @default.
- W2537125286 doi "https://doi.org/10.1049/iet-smt.2016.0291" @default.
- W2537125286 hasPublicationYear "2017" @default.
- W2537125286 type Work @default.
- W2537125286 sameAs 2537125286 @default.
- W2537125286 citedByCount "21" @default.
- W2537125286 countsByYear W25371252862018 @default.
- W2537125286 countsByYear W25371252862019 @default.
- W2537125286 countsByYear W25371252862020 @default.
- W2537125286 countsByYear W25371252862021 @default.
- W2537125286 countsByYear W25371252862022 @default.
- W2537125286 countsByYear W25371252862023 @default.
- W2537125286 crossrefType "journal-article" @default.
- W2537125286 hasAuthorship W2537125286A5035434927 @default.
- W2537125286 hasAuthorship W2537125286A5066572860 @default.
- W2537125286 hasConcept C106131492 @default.
- W2537125286 hasConcept C140779682 @default.
- W2537125286 hasConcept C151730666 @default.
- W2537125286 hasConcept C153180895 @default.
- W2537125286 hasConcept C154945302 @default.
- W2537125286 hasConcept C175551986 @default.
- W2537125286 hasConcept C179717631 @default.
- W2537125286 hasConcept C196216189 @default.
- W2537125286 hasConcept C31972630 @default.
- W2537125286 hasConcept C41008148 @default.
- W2537125286 hasConcept C46286280 @default.
- W2537125286 hasConcept C47432892 @default.
- W2537125286 hasConcept C50644808 @default.
- W2537125286 hasConcept C86803240 @default.
- W2537125286 hasConcept C95722684 @default.
- W2537125286 hasConceptScore W2537125286C106131492 @default.
- W2537125286 hasConceptScore W2537125286C140779682 @default.
- W2537125286 hasConceptScore W2537125286C151730666 @default.
- W2537125286 hasConceptScore W2537125286C153180895 @default.
- W2537125286 hasConceptScore W2537125286C154945302 @default.
- W2537125286 hasConceptScore W2537125286C175551986 @default.
- W2537125286 hasConceptScore W2537125286C179717631 @default.
- W2537125286 hasConceptScore W2537125286C196216189 @default.
- W2537125286 hasConceptScore W2537125286C31972630 @default.
- W2537125286 hasConceptScore W2537125286C41008148 @default.
- W2537125286 hasConceptScore W2537125286C46286280 @default.
- W2537125286 hasConceptScore W2537125286C47432892 @default.
- W2537125286 hasConceptScore W2537125286C50644808 @default.
- W2537125286 hasConceptScore W2537125286C86803240 @default.
- W2537125286 hasConceptScore W2537125286C95722684 @default.
- W2537125286 hasIssue "2" @default.
- W2537125286 hasLocation W25371252861 @default.
- W2537125286 hasOpenAccess W2537125286 @default.
- W2537125286 hasPrimaryLocation W25371252861 @default.
- W2537125286 hasRelatedWork W1577789985 @default.
- W2537125286 hasRelatedWork W1864655828 @default.
- W2537125286 hasRelatedWork W1918078477 @default.
- W2537125286 hasRelatedWork W2016818632 @default.
- W2537125286 hasRelatedWork W2028052878 @default.
- W2537125286 hasRelatedWork W2088158554 @default.
- W2537125286 hasRelatedWork W2158240667 @default.
- W2537125286 hasRelatedWork W2358261684 @default.
- W2537125286 hasRelatedWork W2371096191 @default.
- W2537125286 hasRelatedWork W2890138326 @default.
- W2537125286 hasVolume "11" @default.
- W2537125286 isParatext "false" @default.
- W2537125286 isRetracted "false" @default.
- W2537125286 magId "2537125286" @default.
- W2537125286 workType "article" @default.