Matches in SemOpenAlex for { <https://semopenalex.org/work/W2537723822> ?p ?o ?g. }
- W2537723822 abstract "Structural equation models (SEMs) and vector autoregressive models (VARMs) are two broad families of approaches that have been shown useful in effective brain connectivity studies. While VARMs postulate that a given region of interest in the brain is directionally connected to another one by virtue of time-lagged influences, SEMs assert that causal dependencies arise due to contemporaneous effects, and may even be adopted when nodal measurements are not necessarily multivariate time series. To unify these complementary perspectives, linear structural vector autoregressive models (SVARMs) that leverage both contemporaneous and time-lagged nodal data have recently been put forth. Albeit simple and tractable, linear SVARMs are quite limited since they are incapable of modeling nonlinear dependencies between neuronal time series. To this end, the overarching goal of the present paper is to considerably broaden the span of linear SVARMs by capturing nonlinearities through kernels, which have recently emerged as a powerful nonlinear modeling framework in canonical machine learning tasks, e.g., regression, classification, and dimensionality reduction. The merits of kernel-based methods are extended here to the task of learning the effective brain connectivity, and an efficient regularized estimator is put forth to leverage the edge sparsity inherent to real-world complex networks. Judicious kernel choice from a preselected dictionary of kernels is also addressed using a data-driven approach. Extensive numerical tests on ECoG data captured through a study on epileptic seizures demonstrate that it is possible to unveil previously unknown causal links between brain regions of interest." @default.
- W2537723822 created "2016-10-28" @default.
- W2537723822 creator A5019337064 @default.
- W2537723822 creator A5026758314 @default.
- W2537723822 creator A5067879588 @default.
- W2537723822 date "2016-10-20" @default.
- W2537723822 modified "2023-09-26" @default.
- W2537723822 title "Nonlinear Structural Vector Autoregressive Models for Inferring Effective Brain Network Connectivity" @default.
- W2537723822 cites W1480376833 @default.
- W2537723822 cites W1528049813 @default.
- W2537723822 cites W1684305122 @default.
- W2537723822 cites W1979773754 @default.
- W2537723822 cites W1981903823 @default.
- W2537723822 cites W1999929130 @default.
- W2537723822 cites W2010192956 @default.
- W2537723822 cites W2021768951 @default.
- W2537723822 cites W2021928266 @default.
- W2537723822 cites W2043749411 @default.
- W2537723822 cites W2053559248 @default.
- W2537723822 cites W2055234679 @default.
- W2537723822 cites W2059507087 @default.
- W2537723822 cites W2071872757 @default.
- W2537723822 cites W2072581087 @default.
- W2537723822 cites W2078204079 @default.
- W2537723822 cites W2078711817 @default.
- W2537723822 cites W2080859877 @default.
- W2537723822 cites W2089484174 @default.
- W2537723822 cites W2096023955 @default.
- W2537723822 cites W2108970807 @default.
- W2537723822 cites W2113191728 @default.
- W2537723822 cites W2115706991 @default.
- W2537723822 cites W2117663940 @default.
- W2537723822 cites W2121033924 @default.
- W2537723822 cites W2123993001 @default.
- W2537723822 cites W2127888717 @default.
- W2537723822 cites W2134113810 @default.
- W2537723822 cites W2141460037 @default.
- W2537723822 cites W2153966940 @default.
- W2537723822 cites W2167822639 @default.
- W2537723822 cites W2169581455 @default.
- W2537723822 cites W2608018571 @default.
- W2537723822 cites W378538881 @default.
- W2537723822 doi "https://doi.org/10.48550/arxiv.1610.06551" @default.
- W2537723822 hasPublicationYear "2016" @default.
- W2537723822 type Work @default.
- W2537723822 sameAs 2537723822 @default.
- W2537723822 citedByCount "5" @default.
- W2537723822 countsByYear W25377238222017 @default.
- W2537723822 countsByYear W25377238222019 @default.
- W2537723822 countsByYear W25377238222020 @default.
- W2537723822 countsByYear W25377238222021 @default.
- W2537723822 crossrefType "posted-content" @default.
- W2537723822 hasAuthorship W2537723822A5019337064 @default.
- W2537723822 hasAuthorship W2537723822A5026758314 @default.
- W2537723822 hasAuthorship W2537723822A5067879588 @default.
- W2537723822 hasBestOaLocation W25377238221 @default.
- W2537723822 hasConcept C105795698 @default.
- W2537723822 hasConcept C111030470 @default.
- W2537723822 hasConcept C11413529 @default.
- W2537723822 hasConcept C114614502 @default.
- W2537723822 hasConcept C119857082 @default.
- W2537723822 hasConcept C121332964 @default.
- W2537723822 hasConcept C12267149 @default.
- W2537723822 hasConcept C149782125 @default.
- W2537723822 hasConcept C151406439 @default.
- W2537723822 hasConcept C151876577 @default.
- W2537723822 hasConcept C153083717 @default.
- W2537723822 hasConcept C154945302 @default.
- W2537723822 hasConcept C158622935 @default.
- W2537723822 hasConcept C159877910 @default.
- W2537723822 hasConcept C161584116 @default.
- W2537723822 hasConcept C163175372 @default.
- W2537723822 hasConcept C185429906 @default.
- W2537723822 hasConcept C33923547 @default.
- W2537723822 hasConcept C41008148 @default.
- W2537723822 hasConcept C62520636 @default.
- W2537723822 hasConcept C70518039 @default.
- W2537723822 hasConcept C74193536 @default.
- W2537723822 hasConceptScore W2537723822C105795698 @default.
- W2537723822 hasConceptScore W2537723822C111030470 @default.
- W2537723822 hasConceptScore W2537723822C11413529 @default.
- W2537723822 hasConceptScore W2537723822C114614502 @default.
- W2537723822 hasConceptScore W2537723822C119857082 @default.
- W2537723822 hasConceptScore W2537723822C121332964 @default.
- W2537723822 hasConceptScore W2537723822C12267149 @default.
- W2537723822 hasConceptScore W2537723822C149782125 @default.
- W2537723822 hasConceptScore W2537723822C151406439 @default.
- W2537723822 hasConceptScore W2537723822C151876577 @default.
- W2537723822 hasConceptScore W2537723822C153083717 @default.
- W2537723822 hasConceptScore W2537723822C154945302 @default.
- W2537723822 hasConceptScore W2537723822C158622935 @default.
- W2537723822 hasConceptScore W2537723822C159877910 @default.
- W2537723822 hasConceptScore W2537723822C161584116 @default.
- W2537723822 hasConceptScore W2537723822C163175372 @default.
- W2537723822 hasConceptScore W2537723822C185429906 @default.
- W2537723822 hasConceptScore W2537723822C33923547 @default.
- W2537723822 hasConceptScore W2537723822C41008148 @default.
- W2537723822 hasConceptScore W2537723822C62520636 @default.
- W2537723822 hasConceptScore W2537723822C70518039 @default.
- W2537723822 hasConceptScore W2537723822C74193536 @default.