Matches in SemOpenAlex for { <https://semopenalex.org/work/W2537912191> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2537912191 abstract "Deep learning and unsupervised feature learning have received great attention in past years for their ability to transform input data into high level representations using machine learning techniques. Such interest has been growing steadily in the field of medical image diagnosis, particularly in melanoma classification. In this paper, a novel application of deep learning (stacked sparse auto-encoders) is presented for skin lesion classification task. The stacked sparse auto-encoder discovers latent information features in input images (pixel intensities). These high-level features are subsequently fed into a classifier for classifying dermoscopy images. In addition, we proposed a new deep neural network architecture based on bag-of-features (BoF) model, which learns high-level image representation and maps images into BoF space. Then, we examine how using this deep representation of BoF, compared with pixel intensities of images, can improve the classification accuracy. The proposed method is evaluated on a test set of 244 skin images. To test the performance of the proposed method, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed method is found to achieve 95% accuracy." @default.
- W2537912191 created "2016-10-28" @default.
- W2537912191 creator A5076697477 @default.
- W2537912191 creator A5080426150 @default.
- W2537912191 creator A5091677392 @default.
- W2537912191 date "2016-08-01" @default.
- W2537912191 modified "2023-09-25" @default.
- W2537912191 title "A deep bag-of-features model for the classification of melanomas in dermoscopy images" @default.
- W2537912191 cites W1044489389 @default.
- W2537912191 cites W1527604023 @default.
- W2537912191 cites W2048297895 @default.
- W2537912191 cites W2092455934 @default.
- W2537912191 cites W2100495367 @default.
- W2537912191 cites W2120984789 @default.
- W2537912191 cites W2151103935 @default.
- W2537912191 cites W2180648740 @default.
- W2537912191 cites W2296773526 @default.
- W2537912191 doi "https://doi.org/10.1109/embc.2016.7590962" @default.
- W2537912191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28268580" @default.
- W2537912191 hasPublicationYear "2016" @default.
- W2537912191 type Work @default.
- W2537912191 sameAs 2537912191 @default.
- W2537912191 citedByCount "22" @default.
- W2537912191 countsByYear W25379121912018 @default.
- W2537912191 countsByYear W25379121912019 @default.
- W2537912191 countsByYear W25379121912020 @default.
- W2537912191 countsByYear W25379121912021 @default.
- W2537912191 countsByYear W25379121912022 @default.
- W2537912191 crossrefType "proceedings-article" @default.
- W2537912191 hasAuthorship W2537912191A5076697477 @default.
- W2537912191 hasAuthorship W2537912191A5080426150 @default.
- W2537912191 hasAuthorship W2537912191A5091677392 @default.
- W2537912191 hasConcept C108583219 @default.
- W2537912191 hasConcept C115961682 @default.
- W2537912191 hasConcept C153180895 @default.
- W2537912191 hasConcept C154945302 @default.
- W2537912191 hasConcept C160633673 @default.
- W2537912191 hasConcept C169903167 @default.
- W2537912191 hasConcept C31972630 @default.
- W2537912191 hasConcept C41008148 @default.
- W2537912191 hasConcept C50644808 @default.
- W2537912191 hasConcept C52622490 @default.
- W2537912191 hasConcept C59404180 @default.
- W2537912191 hasConcept C75294576 @default.
- W2537912191 hasConcept C95623464 @default.
- W2537912191 hasConceptScore W2537912191C108583219 @default.
- W2537912191 hasConceptScore W2537912191C115961682 @default.
- W2537912191 hasConceptScore W2537912191C153180895 @default.
- W2537912191 hasConceptScore W2537912191C154945302 @default.
- W2537912191 hasConceptScore W2537912191C160633673 @default.
- W2537912191 hasConceptScore W2537912191C169903167 @default.
- W2537912191 hasConceptScore W2537912191C31972630 @default.
- W2537912191 hasConceptScore W2537912191C41008148 @default.
- W2537912191 hasConceptScore W2537912191C50644808 @default.
- W2537912191 hasConceptScore W2537912191C52622490 @default.
- W2537912191 hasConceptScore W2537912191C59404180 @default.
- W2537912191 hasConceptScore W2537912191C75294576 @default.
- W2537912191 hasConceptScore W2537912191C95623464 @default.
- W2537912191 hasLocation W25379121911 @default.
- W2537912191 hasLocation W25379121912 @default.
- W2537912191 hasOpenAccess W2537912191 @default.
- W2537912191 hasPrimaryLocation W25379121911 @default.
- W2537912191 hasRelatedWork W2563096758 @default.
- W2537912191 hasRelatedWork W2732542196 @default.
- W2537912191 hasRelatedWork W2771515600 @default.
- W2537912191 hasRelatedWork W2773120646 @default.
- W2537912191 hasRelatedWork W2774265021 @default.
- W2537912191 hasRelatedWork W2800691917 @default.
- W2537912191 hasRelatedWork W2807311372 @default.
- W2537912191 hasRelatedWork W2905846897 @default.
- W2537912191 hasRelatedWork W2972035100 @default.
- W2537912191 hasRelatedWork W3203122811 @default.
- W2537912191 isParatext "false" @default.
- W2537912191 isRetracted "false" @default.
- W2537912191 magId "2537912191" @default.
- W2537912191 workType "article" @default.