Matches in SemOpenAlex for { <https://semopenalex.org/work/W2538271728> ?p ?o ?g. }
- W2538271728 abstract "Cognitive diagnosis models (CDMs) are of growing interest in test development and in the measurement of human performance. The DINA (deterministic input, noisy, and gate) model has been widely used in cognitive diagnosis tests and in the process of test development. Central to many such models, the well-known Q-matrix [1], which specifies the item-attribute relationships and two noise parameters in DINA model related to item response functions are termed as slip and guessing. Slip parameter indicates a student with mastery of all of the attributes that an item requires fails to answer the item correctly. In contrast, guessing parameter indicates a student lacks the attributes that are required by an item but succeeds to answer the item correctly. In this paper, we developed a new method and presented an alternate recursive algorithm to learn Q-matrix and uncertainty variables slip and guessing based on Boolean Matrix Factorization (BMF) and Maximum Likelihood Estimation (MLE) respectively for DINA model of CDM. In particularly, we spontaneously transferred the deterministic Q-matrix learning problem into BMF problem. Because BMF is an NP-hard problem [2], we proposed an alternate recursive method to find approximate solution by adding one dimension in attribute latent space in each step. On the other hand, we analytically estimated the slip and guessing parameters through the maximum likelihood of uncertainty variables. The optimum process is alternate recursive between latent attribute space and uncertainty variable space. Simulation results show that the MLE Q-matrix learning algorithm has fast convergence to the optimal solution under suitable initial values of Q init and A init . This is extremely important and applicable when the method is extended to big data." @default.
- W2538271728 created "2016-10-28" @default.
- W2538271728 creator A5035011509 @default.
- W2538271728 creator A5076712405 @default.
- W2538271728 creator A5078326384 @default.
- W2538271728 creator A5081192485 @default.
- W2538271728 creator A5091813996 @default.
- W2538271728 date "2014-10-01" @default.
- W2538271728 modified "2023-09-26" @default.
- W2538271728 title "Maximum likelihood estimation based DINA model and Q-matrix learning" @default.
- W2538271728 cites W125847312 @default.
- W2538271728 cites W1487416157 @default.
- W2538271728 cites W1535199483 @default.
- W2538271728 cites W1540164127 @default.
- W2538271728 cites W1851672339 @default.
- W2538271728 cites W1988464687 @default.
- W2538271728 cites W1993753443 @default.
- W2538271728 cites W2005093659 @default.
- W2538271728 cites W2018999359 @default.
- W2538271728 cites W2026235741 @default.
- W2538271728 cites W2037128745 @default.
- W2538271728 cites W2039552226 @default.
- W2538271728 cites W2039625536 @default.
- W2538271728 cites W2047570292 @default.
- W2538271728 cites W2079758575 @default.
- W2538271728 cites W2079933101 @default.
- W2538271728 cites W2096270992 @default.
- W2538271728 cites W2100432549 @default.
- W2538271728 cites W2112886877 @default.
- W2538271728 cites W2148415528 @default.
- W2538271728 cites W2160342152 @default.
- W2538271728 cites W2164638355 @default.
- W2538271728 cites W2398817920 @default.
- W2538271728 cites W3193112869 @default.
- W2538271728 doi "https://doi.org/10.1109/besc.2014.7059511" @default.
- W2538271728 hasPublicationYear "2014" @default.
- W2538271728 type Work @default.
- W2538271728 sameAs 2538271728 @default.
- W2538271728 citedByCount "1" @default.
- W2538271728 countsByYear W25382717282016 @default.
- W2538271728 crossrefType "proceedings-article" @default.
- W2538271728 hasAuthorship W2538271728A5035011509 @default.
- W2538271728 hasAuthorship W2538271728A5076712405 @default.
- W2538271728 hasAuthorship W2538271728A5078326384 @default.
- W2538271728 hasAuthorship W2538271728A5081192485 @default.
- W2538271728 hasAuthorship W2538271728A5091813996 @default.
- W2538271728 hasConcept C105795698 @default.
- W2538271728 hasConcept C106487976 @default.
- W2538271728 hasConcept C109007969 @default.
- W2538271728 hasConcept C11413529 @default.
- W2538271728 hasConcept C126255220 @default.
- W2538271728 hasConcept C151730666 @default.
- W2538271728 hasConcept C159985019 @default.
- W2538271728 hasConcept C163561899 @default.
- W2538271728 hasConcept C167928553 @default.
- W2538271728 hasConcept C178790620 @default.
- W2538271728 hasConcept C185592680 @default.
- W2538271728 hasConcept C1893757 @default.
- W2538271728 hasConcept C192562407 @default.
- W2538271728 hasConcept C2781311116 @default.
- W2538271728 hasConcept C28826006 @default.
- W2538271728 hasConcept C33923547 @default.
- W2538271728 hasConcept C41008148 @default.
- W2538271728 hasConcept C51167844 @default.
- W2538271728 hasConcept C65965080 @default.
- W2538271728 hasConcept C86803240 @default.
- W2538271728 hasConceptScore W2538271728C105795698 @default.
- W2538271728 hasConceptScore W2538271728C106487976 @default.
- W2538271728 hasConceptScore W2538271728C109007969 @default.
- W2538271728 hasConceptScore W2538271728C11413529 @default.
- W2538271728 hasConceptScore W2538271728C126255220 @default.
- W2538271728 hasConceptScore W2538271728C151730666 @default.
- W2538271728 hasConceptScore W2538271728C159985019 @default.
- W2538271728 hasConceptScore W2538271728C163561899 @default.
- W2538271728 hasConceptScore W2538271728C167928553 @default.
- W2538271728 hasConceptScore W2538271728C178790620 @default.
- W2538271728 hasConceptScore W2538271728C185592680 @default.
- W2538271728 hasConceptScore W2538271728C1893757 @default.
- W2538271728 hasConceptScore W2538271728C192562407 @default.
- W2538271728 hasConceptScore W2538271728C2781311116 @default.
- W2538271728 hasConceptScore W2538271728C28826006 @default.
- W2538271728 hasConceptScore W2538271728C33923547 @default.
- W2538271728 hasConceptScore W2538271728C41008148 @default.
- W2538271728 hasConceptScore W2538271728C51167844 @default.
- W2538271728 hasConceptScore W2538271728C65965080 @default.
- W2538271728 hasConceptScore W2538271728C86803240 @default.
- W2538271728 hasLocation W25382717281 @default.
- W2538271728 hasOpenAccess W2538271728 @default.
- W2538271728 hasPrimaryLocation W25382717281 @default.
- W2538271728 hasRelatedWork W2129962851 @default.
- W2538271728 hasRelatedWork W2322945233 @default.
- W2538271728 hasRelatedWork W2473717518 @default.
- W2538271728 hasRelatedWork W2524699314 @default.
- W2538271728 hasRelatedWork W2810271039 @default.
- W2538271728 hasRelatedWork W2932507190 @default.
- W2538271728 hasRelatedWork W2952301868 @default.
- W2538271728 hasRelatedWork W2953300141 @default.
- W2538271728 hasRelatedWork W2954311290 @default.
- W2538271728 hasRelatedWork W2963158056 @default.
- W2538271728 hasRelatedWork W2963695036 @default.