Matches in SemOpenAlex for { <https://semopenalex.org/work/W2538437819> ?p ?o ?g. }
- W2538437819 endingPage "17" @default.
- W2538437819 startingPage "7" @default.
- W2538437819 abstract "This paper presents a novel empirical correlation to estimate the heat transfer in raceway ponds for different pond sizes and depths. The correlation involves the calculation of Nusselt number. Heat transfer in outdoor raceway ponds was modeled with the effects of pond design, hydrodynamics, and environmental conditions. Monthly average water temperature, Nusselt number, and Prandtl number were used to examine the heat transfer phenomena between pond and its surroundings. A novel relation was also employed to estimate the amount of monthly evaporated water from the raceway ponds. Different aspect ratios, pond depths, and paddle wheel rotational speeds were considered to evaluate the effect of pond geometry and turbulent mixing on heat transfer. The use of empirical relation is an effective approach in designing raceway ponds to estimate heat loss in ponds. Algal productivity decreased with increasing amount of evaporated water. Moreover, the environmental conditions, pond design, and turbulent mixing significantly affected the heat transfer rate and the optimum water temperature for algal growth." @default.
- W2538437819 created "2016-10-28" @default.
- W2538437819 creator A5002023873 @default.
- W2538437819 creator A5049306983 @default.
- W2538437819 creator A5077092452 @default.
- W2538437819 date "2017-03-01" @default.
- W2538437819 modified "2023-10-11" @default.
- W2538437819 title "Numerical prediction of heat transfer characteristics based on monthly temperature gradient in algal open raceway ponds" @default.
- W2538437819 cites W1162321346 @default.
- W2538437819 cites W1775112046 @default.
- W2538437819 cites W1964347129 @default.
- W2538437819 cites W1973905731 @default.
- W2538437819 cites W1976640258 @default.
- W2538437819 cites W1979193289 @default.
- W2538437819 cites W1983067193 @default.
- W2538437819 cites W2001560120 @default.
- W2538437819 cites W2003804481 @default.
- W2538437819 cites W2011675740 @default.
- W2538437819 cites W2017915071 @default.
- W2538437819 cites W2020801807 @default.
- W2538437819 cites W2025342609 @default.
- W2538437819 cites W2029316917 @default.
- W2538437819 cites W2037706711 @default.
- W2538437819 cites W2043003528 @default.
- W2538437819 cites W2044051165 @default.
- W2538437819 cites W2052248104 @default.
- W2538437819 cites W2052952782 @default.
- W2538437819 cites W2071202702 @default.
- W2538437819 cites W2073692545 @default.
- W2538437819 cites W2078391796 @default.
- W2538437819 cites W2079533032 @default.
- W2538437819 cites W2087325985 @default.
- W2538437819 cites W2088123811 @default.
- W2538437819 cites W2090106805 @default.
- W2538437819 cites W2102175373 @default.
- W2538437819 cites W2109485832 @default.
- W2538437819 cites W2124858749 @default.
- W2538437819 cites W2142784028 @default.
- W2538437819 cites W2153922477 @default.
- W2538437819 cites W2182107594 @default.
- W2538437819 cites W2318671548 @default.
- W2538437819 cites W2607612323 @default.
- W2538437819 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.061" @default.
- W2538437819 hasPublicationYear "2017" @default.
- W2538437819 type Work @default.
- W2538437819 sameAs 2538437819 @default.
- W2538437819 citedByCount "14" @default.
- W2538437819 countsByYear W25384378192017 @default.
- W2538437819 countsByYear W25384378192018 @default.
- W2538437819 countsByYear W25384378192019 @default.
- W2538437819 countsByYear W25384378192020 @default.
- W2538437819 countsByYear W25384378192021 @default.
- W2538437819 countsByYear W25384378192022 @default.
- W2538437819 crossrefType "journal-article" @default.
- W2538437819 hasAuthorship W2538437819A5002023873 @default.
- W2538437819 hasAuthorship W2538437819A5049306983 @default.
- W2538437819 hasAuthorship W2538437819A5077092452 @default.
- W2538437819 hasConcept C121332964 @default.
- W2538437819 hasConcept C127313418 @default.
- W2538437819 hasConcept C130230704 @default.
- W2538437819 hasConcept C135628077 @default.
- W2538437819 hasConcept C138777275 @default.
- W2538437819 hasConcept C153294291 @default.
- W2538437819 hasConcept C182748727 @default.
- W2538437819 hasConcept C184547230 @default.
- W2538437819 hasConcept C196558001 @default.
- W2538437819 hasConcept C39432304 @default.
- W2538437819 hasConcept C50517652 @default.
- W2538437819 hasConcept C57879066 @default.
- W2538437819 hasConcept C62520636 @default.
- W2538437819 hasConcept C72687893 @default.
- W2538437819 hasConcept C91586092 @default.
- W2538437819 hasConcept C97355855 @default.
- W2538437819 hasConceptScore W2538437819C121332964 @default.
- W2538437819 hasConceptScore W2538437819C127313418 @default.
- W2538437819 hasConceptScore W2538437819C130230704 @default.
- W2538437819 hasConceptScore W2538437819C135628077 @default.
- W2538437819 hasConceptScore W2538437819C138777275 @default.
- W2538437819 hasConceptScore W2538437819C153294291 @default.
- W2538437819 hasConceptScore W2538437819C182748727 @default.
- W2538437819 hasConceptScore W2538437819C184547230 @default.
- W2538437819 hasConceptScore W2538437819C196558001 @default.
- W2538437819 hasConceptScore W2538437819C39432304 @default.
- W2538437819 hasConceptScore W2538437819C50517652 @default.
- W2538437819 hasConceptScore W2538437819C57879066 @default.
- W2538437819 hasConceptScore W2538437819C62520636 @default.
- W2538437819 hasConceptScore W2538437819C72687893 @default.
- W2538437819 hasConceptScore W2538437819C91586092 @default.
- W2538437819 hasConceptScore W2538437819C97355855 @default.
- W2538437819 hasFunder F4320322120 @default.
- W2538437819 hasFunder F4320322349 @default.
- W2538437819 hasLocation W25384378191 @default.
- W2538437819 hasOpenAccess W2538437819 @default.
- W2538437819 hasPrimaryLocation W25384378191 @default.
- W2538437819 hasRelatedWork W2028682921 @default.
- W2538437819 hasRelatedWork W2031647999 @default.
- W2538437819 hasRelatedWork W2075986941 @default.
- W2538437819 hasRelatedWork W2110690007 @default.