Matches in SemOpenAlex for { <https://semopenalex.org/work/W2539071726> ?p ?o ?g. }
- W2539071726 endingPage "975" @default.
- W2539071726 startingPage "943" @default.
- W2539071726 abstract "We present a systematic construction of FEM-baseddimension-independent (discretization-invariant) Markov chain MonteCarlo (MCMC) approaches to explore PDE-constrained Bayesian inverseproblems in infinite dimensional parameter spaces. In particular, weconsider two frameworks to achieve this goal:Metropolize-then-discretize and discretize-then-Metropolize. Theformer refers to the method of discretizing function-space MCMCmethods. The latter, on the other hand, first discretizes the Bayesianinverse problem and then proposes MCMC methods for the resultingdiscretized posterior probability density. In general, these twoframeworks do not commute, that is, the resulting finite dimensionalMCMC algorithms are not identical. The discretization step of theformer may not be trivial since it involves both numerical analysisand probability theory, while the latter, perhaps ``easier'', may notbe discretization-invariant using traditional approaches. This paperconstructively develops finite element (FEM) discretization schemesfor both frameworks and shows that both commutativity anddiscretization-invariance are attained. In particular, it shows how toconstruct discretize-then-Metropolize approaches for bothMetropolis-adjusted Langevin algorithm and the hybrid Monte Carlo methodthat commute with their Metropolize-then-discretize counterparts. Thekey that enables this achievement is a proper FEM discretization ofthe prior, the likelihood, and the Bayes' formula, together with acorrect definition of quantities such as the gradient and the covariancematrix in discretized finite dimensional parameter spaces. Theimplication is that practitioners can take advantage of the developmentsin this paper to straightforwardly construct discretization-invariantdiscretize-then-Metropolize MCMC for large-scale inverseproblems. Numerical results for one- and two-dimensional ellipticinverse problems with up to $17899$ parameters are presented tosupport the proposed developments." @default.
- W2539071726 created "2016-10-28" @default.
- W2539071726 creator A5003654479 @default.
- W2539071726 creator A5008274019 @default.
- W2539071726 date "2016-10-01" @default.
- W2539071726 modified "2023-09-24" @default.
- W2539071726 title "FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems" @default.
- W2539071726 cites W1545319692 @default.
- W2539071726 cites W1725027855 @default.
- W2539071726 cites W1837874438 @default.
- W2539071726 cites W1872439012 @default.
- W2539071726 cites W1976484026 @default.
- W2539071726 cites W1981514681 @default.
- W2539071726 cites W1996078051 @default.
- W2539071726 cites W2015626078 @default.
- W2539071726 cites W2029164135 @default.
- W2539071726 cites W2030911724 @default.
- W2539071726 cites W2052357917 @default.
- W2539071726 cites W2056760934 @default.
- W2539071726 cites W2057291289 @default.
- W2539071726 cites W2059448777 @default.
- W2539071726 cites W2071544114 @default.
- W2539071726 cites W2082261407 @default.
- W2539071726 cites W2096567125 @default.
- W2539071726 cites W2114424556 @default.
- W2539071726 cites W2114964853 @default.
- W2539071726 cites W2126712148 @default.
- W2539071726 cites W2138309709 @default.
- W2539071726 cites W2138565515 @default.
- W2539071726 cites W2142034717 @default.
- W2539071726 cites W2149498546 @default.
- W2539071726 cites W2152657433 @default.
- W2539071726 cites W2962707560 @default.
- W2539071726 cites W3098146548 @default.
- W2539071726 cites W3106238460 @default.
- W2539071726 cites W4210690383 @default.
- W2539071726 cites W4245445339 @default.
- W2539071726 cites W4292691288 @default.
- W2539071726 cites W4300475775 @default.
- W2539071726 doi "https://doi.org/10.3934/ipi.2016028" @default.
- W2539071726 hasPublicationYear "2016" @default.
- W2539071726 type Work @default.
- W2539071726 sameAs 2539071726 @default.
- W2539071726 citedByCount "23" @default.
- W2539071726 countsByYear W25390717262017 @default.
- W2539071726 countsByYear W25390717262018 @default.
- W2539071726 countsByYear W25390717262020 @default.
- W2539071726 countsByYear W25390717262021 @default.
- W2539071726 countsByYear W25390717262022 @default.
- W2539071726 countsByYear W25390717262023 @default.
- W2539071726 crossrefType "journal-article" @default.
- W2539071726 hasAuthorship W2539071726A5003654479 @default.
- W2539071726 hasAuthorship W2539071726A5008274019 @default.
- W2539071726 hasBestOaLocation W25390717261 @default.
- W2539071726 hasConcept C105427703 @default.
- W2539071726 hasConcept C105795698 @default.
- W2539071726 hasConcept C107673813 @default.
- W2539071726 hasConcept C111350023 @default.
- W2539071726 hasConcept C121332964 @default.
- W2539071726 hasConcept C126148662 @default.
- W2539071726 hasConcept C126255220 @default.
- W2539071726 hasConcept C134306372 @default.
- W2539071726 hasConcept C135628077 @default.
- W2539071726 hasConcept C190470478 @default.
- W2539071726 hasConcept C28826006 @default.
- W2539071726 hasConcept C33923547 @default.
- W2539071726 hasConcept C37914503 @default.
- W2539071726 hasConcept C41008148 @default.
- W2539071726 hasConcept C73000952 @default.
- W2539071726 hasConcept C97355855 @default.
- W2539071726 hasConceptScore W2539071726C105427703 @default.
- W2539071726 hasConceptScore W2539071726C105795698 @default.
- W2539071726 hasConceptScore W2539071726C107673813 @default.
- W2539071726 hasConceptScore W2539071726C111350023 @default.
- W2539071726 hasConceptScore W2539071726C121332964 @default.
- W2539071726 hasConceptScore W2539071726C126148662 @default.
- W2539071726 hasConceptScore W2539071726C126255220 @default.
- W2539071726 hasConceptScore W2539071726C134306372 @default.
- W2539071726 hasConceptScore W2539071726C135628077 @default.
- W2539071726 hasConceptScore W2539071726C190470478 @default.
- W2539071726 hasConceptScore W2539071726C28826006 @default.
- W2539071726 hasConceptScore W2539071726C33923547 @default.
- W2539071726 hasConceptScore W2539071726C37914503 @default.
- W2539071726 hasConceptScore W2539071726C41008148 @default.
- W2539071726 hasConceptScore W2539071726C73000952 @default.
- W2539071726 hasConceptScore W2539071726C97355855 @default.
- W2539071726 hasIssue "4" @default.
- W2539071726 hasLocation W25390717261 @default.
- W2539071726 hasLocation W25390717262 @default.
- W2539071726 hasOpenAccess W2539071726 @default.
- W2539071726 hasPrimaryLocation W25390717261 @default.
- W2539071726 hasRelatedWork W154872566 @default.
- W2539071726 hasRelatedWork W2014117978 @default.
- W2539071726 hasRelatedWork W2038538495 @default.
- W2539071726 hasRelatedWork W2040149666 @default.
- W2539071726 hasRelatedWork W2085754006 @default.
- W2539071726 hasRelatedWork W2539071726 @default.
- W2539071726 hasRelatedWork W2556186148 @default.