Matches in SemOpenAlex for { <https://semopenalex.org/work/W2539104614> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2539104614 endingPage "138" @default.
- W2539104614 startingPage "119" @default.
- W2539104614 abstract "The first part of this paper served as a comprehensive survey of data mining methods that have been used to extract knowledge from solutions generated during multi-objective optimization. The current paper addresses three major shortcomings of existing methods, namely, lack of interactiveness in the objective space, inability to handle discrete variables and inability to generate explicit knowledge. Four data mining methods are developed that can discover knowledge in the decision space and visualize it in the objective space. These methods are (i) sequential pattern mining, (ii) clustering-based classification trees, (iii) hybrid learning, and (iv) flexible pattern mining. Each method uses a unique learning strategy to generate explicit knowledge in the form of patterns, decision rules and unsupervised rules. The methods are also capable of taking the decision maker’s preferences into account to generate knowledge unique to preferred regions of the objective space. Three realistic production systems involving different types of discrete variables are chosen as application studies. A multi-objective optimization problem is formulated for each system and solved using NSGA-II to generate the optimization datasets. Next, all four methods are applied to each dataset. In each application, the methods discover similar knowledge for specified regions of the objective space. Overall, the unsupervised rules generated by flexible pattern mining are found to be the most consistent, whereas the supervised rules from classification trees are the most sensitive to user-preferences." @default.
- W2539104614 created "2016-10-28" @default.
- W2539104614 creator A5007127321 @default.
- W2539104614 creator A5067664620 @default.
- W2539104614 creator A5088394271 @default.
- W2539104614 date "2017-03-01" @default.
- W2539104614 modified "2023-10-03" @default.
- W2539104614 title "Data mining methods for knowledge discovery in multi-objective optimization: Part B - New developments and applications" @default.
- W2539104614 cites W1544956787 @default.
- W2539104614 cites W2043853017 @default.
- W2539104614 cites W2049260303 @default.
- W2539104614 cites W2074634323 @default.
- W2539104614 cites W2083942758 @default.
- W2539104614 cites W2089874664 @default.
- W2539104614 cites W2126105956 @default.
- W2539104614 cites W2145839659 @default.
- W2539104614 cites W2149631558 @default.
- W2539104614 cites W2153233077 @default.
- W2539104614 cites W4236137412 @default.
- W2539104614 doi "https://doi.org/10.1016/j.eswa.2016.10.016" @default.
- W2539104614 hasPublicationYear "2017" @default.
- W2539104614 type Work @default.
- W2539104614 sameAs 2539104614 @default.
- W2539104614 citedByCount "45" @default.
- W2539104614 countsByYear W25391046142017 @default.
- W2539104614 countsByYear W25391046142018 @default.
- W2539104614 countsByYear W25391046142019 @default.
- W2539104614 countsByYear W25391046142020 @default.
- W2539104614 countsByYear W25391046142021 @default.
- W2539104614 countsByYear W25391046142022 @default.
- W2539104614 countsByYear W25391046142023 @default.
- W2539104614 crossrefType "journal-article" @default.
- W2539104614 hasAuthorship W2539104614A5007127321 @default.
- W2539104614 hasAuthorship W2539104614A5067664620 @default.
- W2539104614 hasAuthorship W2539104614A5088394271 @default.
- W2539104614 hasBestOaLocation W25391046142 @default.
- W2539104614 hasConcept C111919701 @default.
- W2539104614 hasConcept C119857082 @default.
- W2539104614 hasConcept C120567893 @default.
- W2539104614 hasConcept C124101348 @default.
- W2539104614 hasConcept C154945302 @default.
- W2539104614 hasConcept C2778572836 @default.
- W2539104614 hasConcept C41008148 @default.
- W2539104614 hasConcept C73555534 @default.
- W2539104614 hasConcept C84525736 @default.
- W2539104614 hasConceptScore W2539104614C111919701 @default.
- W2539104614 hasConceptScore W2539104614C119857082 @default.
- W2539104614 hasConceptScore W2539104614C120567893 @default.
- W2539104614 hasConceptScore W2539104614C124101348 @default.
- W2539104614 hasConceptScore W2539104614C154945302 @default.
- W2539104614 hasConceptScore W2539104614C2778572836 @default.
- W2539104614 hasConceptScore W2539104614C41008148 @default.
- W2539104614 hasConceptScore W2539104614C73555534 @default.
- W2539104614 hasConceptScore W2539104614C84525736 @default.
- W2539104614 hasLocation W25391046141 @default.
- W2539104614 hasLocation W25391046142 @default.
- W2539104614 hasOpenAccess W2539104614 @default.
- W2539104614 hasPrimaryLocation W25391046141 @default.
- W2539104614 hasRelatedWork W1470425429 @default.
- W2539104614 hasRelatedWork W3200719183 @default.
- W2539104614 hasRelatedWork W3204641204 @default.
- W2539104614 hasRelatedWork W3210877509 @default.
- W2539104614 hasRelatedWork W4205958290 @default.
- W2539104614 hasRelatedWork W4249746146 @default.
- W2539104614 hasRelatedWork W4283016678 @default.
- W2539104614 hasRelatedWork W4306321456 @default.
- W2539104614 hasRelatedWork W4318350883 @default.
- W2539104614 hasRelatedWork W4328134586 @default.
- W2539104614 hasVolume "70" @default.
- W2539104614 isParatext "false" @default.
- W2539104614 isRetracted "false" @default.
- W2539104614 magId "2539104614" @default.
- W2539104614 workType "article" @default.