Matches in SemOpenAlex for { <https://semopenalex.org/work/W2539490561> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2539490561 abstract "In this work we introduce the most recent techniques to predict traffic flow and speed. This work is composed of the following sections: an introduction, a state of the art, and conclusions sections. In the introduction section we see the importance of being able to predict the traffic conditions for speed and flow; we set our hypothesis that is that using the Levenberg-Marquardt training algorithm we’ll be able to find a global minimum for the problem of predicting traffic conditions; we also specify our general objective that is developing efficient algorithms for the traffic prediction for its variables speed and flow; as well as establishing that our scientifical novelty is using the Levenberg-Marquardt as Artificial Neural Network training algorithm. In the state of the art section we present the summarized contents of the most outstanding research papers about traffic prediction. We continue with the presentation of an approach that uses two statistical algorithms for traffic prediction. This information cover spatial impact, and accidents, and construction events. Additionally, it compares the results of outstanding research done with Artificial Neural Networks, and tatistical Methods, to their own statistical method that consists of two statistical methods embedded into only one by using a threshold used to determine which statistical method should be used and when, depending on the road conditions. We also present the results of traffic speed prediction by data mining techniques and a comparative to Artificial Neural Networks. Additionally, we introduce a section that analyze the problem of traffic prediction but only with Artificial Neural Networks done by the company SIEMENS in Germany. We introduce the Los Angeles Department of Transportation (LA DOT) infrastructure used to obtain the speed and flow measurements as well as the set of programs develop by the author of this thesis to retrieve the information from LA DOT, to process this information and calculate the prediction of flow and speed for a specific sensor. We continue with the problem of traffic prediction. In the process of predicting traffic flow, and speed we made our first approach using a Nonlinear Autoregressive Neural Network with External Input in MATLAB and we obtained promising results. However, this Artificial Neural Network does not have the ability to predict multiple outputs, and we transformed it to a Feedforward Neural Network also from MATLAB. The results obtained are impressive because they reduce dramatically the traffic prediction errors. In order to validate our results with the ones in the international research community we use the data from 95 days which is equivalent to 3 months, which is the commonly reported amount of time studied in this kind of problems. We also present an optimization process for the Feedforward Neural Network for both problems speed and flow prediction. Finally, we present a numerical sensibility analysis in order to determine how robust is our Artificial Neural Network. To close this thesis we present our conclusions as a success of using the Levenberg-Marquardt algorithm to train an Artificial Neural Network for the problem of traffic prediction, and we set up the possibilities of exploring the recently found result by using the learning techniques of deep learning." @default.
- W2539490561 created "2016-11-04" @default.
- W2539490561 creator A5088901659 @default.
- W2539490561 date "2016-10-19" @default.
- W2539490561 modified "2023-09-24" @default.
- W2539490561 title "Implementation and development of traffic speed and flow prediction through Artificial Neural Networks" @default.
- W2539490561 hasPublicationYear "2016" @default.
- W2539490561 type Work @default.
- W2539490561 sameAs 2539490561 @default.
- W2539490561 citedByCount "0" @default.
- W2539490561 crossrefType "dissertation" @default.
- W2539490561 hasAuthorship W2539490561A5088901659 @default.
- W2539490561 hasConcept C111919701 @default.
- W2539490561 hasConcept C119857082 @default.
- W2539490561 hasConcept C124101348 @default.
- W2539490561 hasConcept C127413603 @default.
- W2539490561 hasConcept C138885662 @default.
- W2539490561 hasConcept C154945302 @default.
- W2539490561 hasConcept C176715033 @default.
- W2539490561 hasConcept C177264268 @default.
- W2539490561 hasConcept C199360897 @default.
- W2539490561 hasConcept C207512268 @default.
- W2539490561 hasConcept C22212356 @default.
- W2539490561 hasConcept C27206212 @default.
- W2539490561 hasConcept C2778738651 @default.
- W2539490561 hasConcept C2780129039 @default.
- W2539490561 hasConcept C38652104 @default.
- W2539490561 hasConcept C41008148 @default.
- W2539490561 hasConcept C47796450 @default.
- W2539490561 hasConcept C50644808 @default.
- W2539490561 hasConcept C79403827 @default.
- W2539490561 hasConceptScore W2539490561C111919701 @default.
- W2539490561 hasConceptScore W2539490561C119857082 @default.
- W2539490561 hasConceptScore W2539490561C124101348 @default.
- W2539490561 hasConceptScore W2539490561C127413603 @default.
- W2539490561 hasConceptScore W2539490561C138885662 @default.
- W2539490561 hasConceptScore W2539490561C154945302 @default.
- W2539490561 hasConceptScore W2539490561C176715033 @default.
- W2539490561 hasConceptScore W2539490561C177264268 @default.
- W2539490561 hasConceptScore W2539490561C199360897 @default.
- W2539490561 hasConceptScore W2539490561C207512268 @default.
- W2539490561 hasConceptScore W2539490561C22212356 @default.
- W2539490561 hasConceptScore W2539490561C27206212 @default.
- W2539490561 hasConceptScore W2539490561C2778738651 @default.
- W2539490561 hasConceptScore W2539490561C2780129039 @default.
- W2539490561 hasConceptScore W2539490561C38652104 @default.
- W2539490561 hasConceptScore W2539490561C41008148 @default.
- W2539490561 hasConceptScore W2539490561C47796450 @default.
- W2539490561 hasConceptScore W2539490561C50644808 @default.
- W2539490561 hasConceptScore W2539490561C79403827 @default.
- W2539490561 hasLocation W25394905611 @default.
- W2539490561 hasOpenAccess W2539490561 @default.
- W2539490561 hasPrimaryLocation W25394905611 @default.
- W2539490561 hasRelatedWork W1127331733 @default.
- W2539490561 hasRelatedWork W1568723993 @default.
- W2539490561 hasRelatedWork W1973050880 @default.
- W2539490561 hasRelatedWork W1980309030 @default.
- W2539490561 hasRelatedWork W1996219540 @default.
- W2539490561 hasRelatedWork W2098691117 @default.
- W2539490561 hasRelatedWork W2151372064 @default.
- W2539490561 hasRelatedWork W2328481507 @default.
- W2539490561 hasRelatedWork W2561280477 @default.
- W2539490561 hasRelatedWork W2584806036 @default.
- W2539490561 hasRelatedWork W2592113535 @default.
- W2539490561 hasRelatedWork W2752002612 @default.
- W2539490561 hasRelatedWork W2794961495 @default.
- W2539490561 hasRelatedWork W2949584680 @default.
- W2539490561 hasRelatedWork W3022964535 @default.
- W2539490561 hasRelatedWork W3091485273 @default.
- W2539490561 hasRelatedWork W3115119208 @default.
- W2539490561 hasRelatedWork W3128978958 @default.
- W2539490561 hasRelatedWork W3184626943 @default.
- W2539490561 hasRelatedWork W1536925122 @default.
- W2539490561 isParatext "false" @default.
- W2539490561 isRetracted "false" @default.
- W2539490561 magId "2539490561" @default.
- W2539490561 workType "dissertation" @default.