Matches in SemOpenAlex for { <https://semopenalex.org/work/W2540923435> ?p ?o ?g. }
- W2540923435 endingPage "53" @default.
- W2540923435 startingPage "41" @default.
- W2540923435 abstract "The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]." @default.
- W2540923435 created "2016-11-04" @default.
- W2540923435 creator A5037634645 @default.
- W2540923435 creator A5045059219 @default.
- W2540923435 creator A5049389291 @default.
- W2540923435 creator A5063947394 @default.
- W2540923435 creator A5073803808 @default.
- W2540923435 creator A5076158905 @default.
- W2540923435 date "2017-01-01" @default.
- W2540923435 modified "2023-10-18" @default.
- W2540923435 title "Bayesian Genomic Prediction with Genotype <b>×</b> Environment Interaction Kernel Models" @default.
- W2540923435 cites W1928998639 @default.
- W2540923435 cites W1970149620 @default.
- W2540923435 cites W2006103331 @default.
- W2540923435 cites W2030126026 @default.
- W2540923435 cites W2067715889 @default.
- W2540923435 cites W2076772232 @default.
- W2540923435 cites W2105642394 @default.
- W2540923435 cites W2105968566 @default.
- W2540923435 cites W2109349581 @default.
- W2540923435 cites W2127843966 @default.
- W2540923435 cites W2129113310 @default.
- W2540923435 cites W2129192099 @default.
- W2540923435 cites W2130060388 @default.
- W2540923435 cites W2139280752 @default.
- W2540923435 cites W2151391832 @default.
- W2540923435 cites W2153566321 @default.
- W2540923435 cites W2161388897 @default.
- W2540923435 cites W2168952261 @default.
- W2540923435 cites W2270508619 @default.
- W2540923435 cites W2301928852 @default.
- W2540923435 cites W2523473862 @default.
- W2540923435 doi "https://doi.org/10.1534/g3.116.035584" @default.
- W2540923435 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5217122" @default.
- W2540923435 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27793970" @default.
- W2540923435 hasPublicationYear "2017" @default.
- W2540923435 type Work @default.
- W2540923435 sameAs 2540923435 @default.
- W2540923435 citedByCount "112" @default.
- W2540923435 countsByYear W25409234352017 @default.
- W2540923435 countsByYear W25409234352018 @default.
- W2540923435 countsByYear W25409234352019 @default.
- W2540923435 countsByYear W25409234352020 @default.
- W2540923435 countsByYear W25409234352021 @default.
- W2540923435 countsByYear W25409234352022 @default.
- W2540923435 countsByYear W25409234352023 @default.
- W2540923435 crossrefType "journal-article" @default.
- W2540923435 hasAuthorship W2540923435A5037634645 @default.
- W2540923435 hasAuthorship W2540923435A5045059219 @default.
- W2540923435 hasAuthorship W2540923435A5049389291 @default.
- W2540923435 hasAuthorship W2540923435A5063947394 @default.
- W2540923435 hasAuthorship W2540923435A5073803808 @default.
- W2540923435 hasAuthorship W2540923435A5076158905 @default.
- W2540923435 hasBestOaLocation W25409234351 @default.
- W2540923435 hasConcept C103545067 @default.
- W2540923435 hasConcept C105795698 @default.
- W2540923435 hasConcept C107673813 @default.
- W2540923435 hasConcept C114614502 @default.
- W2540923435 hasConcept C119857082 @default.
- W2540923435 hasConcept C121332964 @default.
- W2540923435 hasConcept C126322002 @default.
- W2540923435 hasConcept C16012445 @default.
- W2540923435 hasConcept C163175372 @default.
- W2540923435 hasConcept C168167062 @default.
- W2540923435 hasConcept C168743327 @default.
- W2540923435 hasConcept C178650346 @default.
- W2540923435 hasConcept C33923547 @default.
- W2540923435 hasConcept C41008148 @default.
- W2540923435 hasConcept C71924100 @default.
- W2540923435 hasConcept C74193536 @default.
- W2540923435 hasConcept C81917197 @default.
- W2540923435 hasConcept C95190672 @default.
- W2540923435 hasConcept C97355855 @default.
- W2540923435 hasConceptScore W2540923435C103545067 @default.
- W2540923435 hasConceptScore W2540923435C105795698 @default.
- W2540923435 hasConceptScore W2540923435C107673813 @default.
- W2540923435 hasConceptScore W2540923435C114614502 @default.
- W2540923435 hasConceptScore W2540923435C119857082 @default.
- W2540923435 hasConceptScore W2540923435C121332964 @default.
- W2540923435 hasConceptScore W2540923435C126322002 @default.
- W2540923435 hasConceptScore W2540923435C16012445 @default.
- W2540923435 hasConceptScore W2540923435C163175372 @default.
- W2540923435 hasConceptScore W2540923435C168167062 @default.
- W2540923435 hasConceptScore W2540923435C168743327 @default.
- W2540923435 hasConceptScore W2540923435C178650346 @default.
- W2540923435 hasConceptScore W2540923435C33923547 @default.
- W2540923435 hasConceptScore W2540923435C41008148 @default.
- W2540923435 hasConceptScore W2540923435C71924100 @default.
- W2540923435 hasConceptScore W2540923435C74193536 @default.
- W2540923435 hasConceptScore W2540923435C81917197 @default.
- W2540923435 hasConceptScore W2540923435C95190672 @default.
- W2540923435 hasConceptScore W2540923435C97355855 @default.
- W2540923435 hasIssue "1" @default.
- W2540923435 hasLocation W25409234351 @default.
- W2540923435 hasLocation W25409234352 @default.
- W2540923435 hasLocation W25409234353 @default.
- W2540923435 hasLocation W25409234354 @default.
- W2540923435 hasLocation W25409234355 @default.