Matches in SemOpenAlex for { <https://semopenalex.org/work/W2540935574> ?p ?o ?g. }
- W2540935574 endingPage "438" @default.
- W2540935574 startingPage "426" @default.
- W2540935574 abstract "Recent work has shown that existing powerful Bayesian hyperspectral unmixing algorithms can be significantly improved by incorporating the inherent local spatial correlations between pixel class labels via the use of Markov random fields. We here propose a new Bayesian approach to joint hyperspectral unmixing and image classification such that the previous assumption of stochastic abundance vectors is relaxed to a formulation whereby a common abundance vector is assumed for pixels in each class. This allows us to avoid stochastic reparameterizations and, instead, we propose a symmetric Dirichlet distributionmodel with adjustable parameters for the common abundance vector of each class. Inference over the proposed model is achieved via a hybrid Gibbs sampler, and in particular, simulated annealing is introduced for the label estimation in order to avoid the local-trap problem. Experiments on a synthetic image and a popular, publicly available real data set indicate the proposed model is faster than and outperforms the existing approach quantitatively and qualitatively. Moreover, for appropriate choices of the Dirichlet parameter, it is shown that the proposed approach has the capability to induce sparsity in the inferred abundance vectors. It is demonstrated that this offers increased robustness in cases where the preprocessing endmember extraction algorithms overestimate the number of active endmembers present in a given scene." @default.
- W2540935574 created "2016-11-04" @default.
- W2540935574 creator A5018816346 @default.
- W2540935574 creator A5024986740 @default.
- W2540935574 creator A5044080027 @default.
- W2540935574 date "2017-01-01" @default.
- W2540935574 modified "2023-10-05" @default.
- W2540935574 title "Toward a Sparse Bayesian Markov Random Field Approach to Hyperspectral Unmixing and Classification" @default.
- W2540935574 cites W1774344329 @default.
- W2540935574 cites W1964570608 @default.
- W2540935574 cites W1976615758 @default.
- W2540935574 cites W1983628095 @default.
- W2540935574 cites W1989692914 @default.
- W2540935574 cites W1995770467 @default.
- W2540935574 cites W2020999234 @default.
- W2540935574 cites W2032237655 @default.
- W2540935574 cites W2032345535 @default.
- W2540935574 cites W2035508858 @default.
- W2540935574 cites W2040049280 @default.
- W2540935574 cites W2043719428 @default.
- W2540935574 cites W2046587107 @default.
- W2540935574 cites W2050041778 @default.
- W2540935574 cites W2051378923 @default.
- W2540935574 cites W2070424424 @default.
- W2540935574 cites W2074010031 @default.
- W2540935574 cites W2078115938 @default.
- W2540935574 cites W2081555128 @default.
- W2540935574 cites W2084724634 @default.
- W2540935574 cites W2085469741 @default.
- W2540935574 cites W2095343758 @default.
- W2540935574 cites W2096038730 @default.
- W2540935574 cites W2101837437 @default.
- W2540935574 cites W2113464037 @default.
- W2540935574 cites W2114486983 @default.
- W2540935574 cites W2123038108 @default.
- W2540935574 cites W2125298866 @default.
- W2540935574 cites W2125880329 @default.
- W2540935574 cites W2127062304 @default.
- W2540935574 cites W2138565847 @default.
- W2540935574 cites W2143500192 @default.
- W2540935574 cites W2144188273 @default.
- W2540935574 cites W2148534890 @default.
- W2540935574 cites W2151351889 @default.
- W2540935574 cites W2157321686 @default.
- W2540935574 cites W2163721270 @default.
- W2540935574 cites W2169924573 @default.
- W2540935574 cites W3099242408 @default.
- W2540935574 cites W3100817930 @default.
- W2540935574 cites W3122463936 @default.
- W2540935574 cites W4249731213 @default.
- W2540935574 cites W4256038730 @default.
- W2540935574 cites W571770348 @default.
- W2540935574 doi "https://doi.org/10.1109/tip.2016.2622401" @default.
- W2540935574 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27810822" @default.
- W2540935574 hasPublicationYear "2017" @default.
- W2540935574 type Work @default.
- W2540935574 sameAs 2540935574 @default.
- W2540935574 citedByCount "20" @default.
- W2540935574 countsByYear W25409355742017 @default.
- W2540935574 countsByYear W25409355742018 @default.
- W2540935574 countsByYear W25409355742019 @default.
- W2540935574 countsByYear W25409355742020 @default.
- W2540935574 countsByYear W25409355742021 @default.
- W2540935574 countsByYear W25409355742022 @default.
- W2540935574 countsByYear W25409355742023 @default.
- W2540935574 crossrefType "journal-article" @default.
- W2540935574 hasAuthorship W2540935574A5018816346 @default.
- W2540935574 hasAuthorship W2540935574A5024986740 @default.
- W2540935574 hasAuthorship W2540935574A5044080027 @default.
- W2540935574 hasBestOaLocation W25409355742 @default.
- W2540935574 hasConcept C104317684 @default.
- W2540935574 hasConcept C105795698 @default.
- W2540935574 hasConcept C107673813 @default.
- W2540935574 hasConcept C11413529 @default.
- W2540935574 hasConcept C115961682 @default.
- W2540935574 hasConcept C119857082 @default.
- W2540935574 hasConcept C124504099 @default.
- W2540935574 hasConcept C126980161 @default.
- W2540935574 hasConcept C130402806 @default.
- W2540935574 hasConcept C134306372 @default.
- W2540935574 hasConcept C153180895 @default.
- W2540935574 hasConcept C154945302 @default.
- W2540935574 hasConcept C158424031 @default.
- W2540935574 hasConcept C159078339 @default.
- W2540935574 hasConcept C160633673 @default.
- W2540935574 hasConcept C169214877 @default.
- W2540935574 hasConcept C182310444 @default.
- W2540935574 hasConcept C185592680 @default.
- W2540935574 hasConcept C2778045648 @default.
- W2540935574 hasConcept C33923547 @default.
- W2540935574 hasConcept C41008148 @default.
- W2540935574 hasConcept C55493867 @default.
- W2540935574 hasConcept C58237817 @default.
- W2540935574 hasConcept C63479239 @default.
- W2540935574 hasConcept C98763669 @default.
- W2540935574 hasConceptScore W2540935574C104317684 @default.
- W2540935574 hasConceptScore W2540935574C105795698 @default.
- W2540935574 hasConceptScore W2540935574C107673813 @default.