Matches in SemOpenAlex for { <https://semopenalex.org/work/W2541503408> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2541503408 endingPage "531" @default.
- W2541503408 startingPage "523" @default.
- W2541503408 abstract "In many practical situations, it is effective to use statistical methods based on Gaussian distributions, and, more generally, distribution for which tails are light – in the sense that as the value increases, the corresponding probability density tends to 0 very fast. There are many theoretical explanations for this effectiveness. On the other hand, in many other cases, it is effective to use statistical methods based on heavy-tailed distributions, in which the probability density is asymptotically described, e.g., by a power law. In contrast to the light-tailed distributions, there is no convincing theoretical explanation for the effectiveness of the heavy-tail-based statistical methods. In this paper, we provide such a theoretical explanation. This explanation is based on the fact that in many applications, we approximate a continuous distribution by a discrete one. From this viewpoint, it is desirable, among all possible distributions which are consistent with our knowledge, to select a distribution for which such an approximation is the most accurate. It turns out that under reasonable conditions, this requirement (of allowing the most accurate discrete approximation) indeed leads to the statistical methods based on the power-law heavy-tailed distributions." @default.
- W2541503408 created "2016-11-04" @default.
- W2541503408 creator A5057294414 @default.
- W2541503408 creator A5058887761 @default.
- W2541503408 creator A5061275811 @default.
- W2541503408 creator A5075920182 @default.
- W2541503408 date "2016-01-01" @default.
- W2541503408 modified "2023-10-18" @default.
- W2541503408 title "Need for Most Accurate Discrete Approximations Explains Effectiveness of Statistical Methods Based on Heavy-Tailed Distributions" @default.
- W2541503408 cites W1965674781 @default.
- W2541503408 cites W2049978423 @default.
- W2541503408 cites W2071681435 @default.
- W2541503408 cites W2147903548 @default.
- W2541503408 cites W2498852811 @default.
- W2541503408 cites W261556168 @default.
- W2541503408 cites W2672887890 @default.
- W2541503408 cites W3125246470 @default.
- W2541503408 cites W4229774059 @default.
- W2541503408 cites W4232701755 @default.
- W2541503408 cites W4240736275 @default.
- W2541503408 cites W4299551239 @default.
- W2541503408 doi "https://doi.org/10.1007/978-3-319-49046-5_44" @default.
- W2541503408 hasPublicationYear "2016" @default.
- W2541503408 type Work @default.
- W2541503408 sameAs 2541503408 @default.
- W2541503408 citedByCount "0" @default.
- W2541503408 crossrefType "book-chapter" @default.
- W2541503408 hasAuthorship W2541503408A5057294414 @default.
- W2541503408 hasAuthorship W2541503408A5058887761 @default.
- W2541503408 hasAuthorship W2541503408A5061275811 @default.
- W2541503408 hasAuthorship W2541503408A5075920182 @default.
- W2541503408 hasConcept C105795698 @default.
- W2541503408 hasConcept C110121322 @default.
- W2541503408 hasConcept C112972136 @default.
- W2541503408 hasConcept C119857082 @default.
- W2541503408 hasConcept C121332964 @default.
- W2541503408 hasConcept C121864883 @default.
- W2541503408 hasConcept C134306372 @default.
- W2541503408 hasConcept C149441793 @default.
- W2541503408 hasConcept C1602530 @default.
- W2541503408 hasConcept C163716315 @default.
- W2541503408 hasConcept C166921843 @default.
- W2541503408 hasConcept C28826006 @default.
- W2541503408 hasConcept C33923547 @default.
- W2541503408 hasConcept C41008148 @default.
- W2541503408 hasConcept C58948655 @default.
- W2541503408 hasConcept C62520636 @default.
- W2541503408 hasConcept C87040749 @default.
- W2541503408 hasConcept C96608239 @default.
- W2541503408 hasConceptScore W2541503408C105795698 @default.
- W2541503408 hasConceptScore W2541503408C110121322 @default.
- W2541503408 hasConceptScore W2541503408C112972136 @default.
- W2541503408 hasConceptScore W2541503408C119857082 @default.
- W2541503408 hasConceptScore W2541503408C121332964 @default.
- W2541503408 hasConceptScore W2541503408C121864883 @default.
- W2541503408 hasConceptScore W2541503408C134306372 @default.
- W2541503408 hasConceptScore W2541503408C149441793 @default.
- W2541503408 hasConceptScore W2541503408C1602530 @default.
- W2541503408 hasConceptScore W2541503408C163716315 @default.
- W2541503408 hasConceptScore W2541503408C166921843 @default.
- W2541503408 hasConceptScore W2541503408C28826006 @default.
- W2541503408 hasConceptScore W2541503408C33923547 @default.
- W2541503408 hasConceptScore W2541503408C41008148 @default.
- W2541503408 hasConceptScore W2541503408C58948655 @default.
- W2541503408 hasConceptScore W2541503408C62520636 @default.
- W2541503408 hasConceptScore W2541503408C87040749 @default.
- W2541503408 hasConceptScore W2541503408C96608239 @default.
- W2541503408 hasLocation W25415034081 @default.
- W2541503408 hasOpenAccess W2541503408 @default.
- W2541503408 hasPrimaryLocation W25415034081 @default.
- W2541503408 hasRelatedWork W1604974903 @default.
- W2541503408 hasRelatedWork W1974528945 @default.
- W2541503408 hasRelatedWork W2087001052 @default.
- W2541503408 hasRelatedWork W2095361141 @default.
- W2541503408 hasRelatedWork W2151153743 @default.
- W2541503408 hasRelatedWork W2411421322 @default.
- W2541503408 hasRelatedWork W2541503408 @default.
- W2541503408 hasRelatedWork W2602803977 @default.
- W2541503408 hasRelatedWork W3032248989 @default.
- W2541503408 hasRelatedWork W4233861405 @default.
- W2541503408 isParatext "false" @default.
- W2541503408 isRetracted "false" @default.
- W2541503408 magId "2541503408" @default.
- W2541503408 workType "book-chapter" @default.