Matches in SemOpenAlex for { <https://semopenalex.org/work/W2542009849> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2542009849 endingPage "7" @default.
- W2542009849 startingPage "1" @default.
- W2542009849 abstract "The segmentation of coronary arteries is a vital process that helps cardiovascular radiologists detect and quantify stenosis. In this paper, we propose a fully automated coronary artery segmentation from cardiac data volume. The method is built on a statistics region growing together with a heuristic decision. First, the heart region is extracted using a multi-atlas-based approach. Second, the vessel structures are enhanced via a 3D multiscale line filter. Next, seed points are detected automatically through a threshold preprocessing and a subsequent morphological operation. Based on the set of detected seed points, a statistics-based region growing is applied. Finally, results are obtained by setting conservative parameters. A heuristic decision method is then used to obtain the desired result automatically because parameters in region growing vary in different patients, and the segmentation requires full automation. The experiments are carried out on a dataset that includes eight-patient multivendor cardiac computed tomography angiography (CTA) volume data. The DICE similarity index, mean distance, and Hausdorff distance metrics are employed to compare the proposed algorithm with two state-of-the-art methods. Experimental results indicate that the proposed algorithm is capable of performing complete, robust, and accurate extraction of coronary arteries." @default.
- W2542009849 created "2016-11-04" @default.
- W2542009849 creator A5002734812 @default.
- W2542009849 creator A5030430000 @default.
- W2542009849 creator A5042301216 @default.
- W2542009849 creator A5046597133 @default.
- W2542009849 creator A5066116503 @default.
- W2542009849 creator A5084694395 @default.
- W2542009849 date "2016-01-01" @default.
- W2542009849 modified "2023-10-17" @default.
- W2542009849 title "Automated Segmentation of Coronary Arteries Based on Statistical Region Growing and Heuristic Decision Method" @default.
- W2542009849 cites W1541113750 @default.
- W2542009849 cites W199229348 @default.
- W2542009849 cites W1998174764 @default.
- W2542009849 cites W200744690 @default.
- W2542009849 cites W2049268713 @default.
- W2542009849 cites W2082304218 @default.
- W2542009849 cites W2096320880 @default.
- W2542009849 cites W2129534965 @default.
- W2542009849 cites W2185291575 @default.
- W2542009849 cites W988932408 @default.
- W2542009849 doi "https://doi.org/10.1155/2016/3530251" @default.
- W2542009849 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5107877" @default.
- W2542009849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27872849" @default.
- W2542009849 hasPublicationYear "2016" @default.
- W2542009849 type Work @default.
- W2542009849 sameAs 2542009849 @default.
- W2542009849 citedByCount "12" @default.
- W2542009849 countsByYear W25420098492017 @default.
- W2542009849 countsByYear W25420098492018 @default.
- W2542009849 countsByYear W25420098492019 @default.
- W2542009849 countsByYear W25420098492021 @default.
- W2542009849 countsByYear W25420098492022 @default.
- W2542009849 crossrefType "journal-article" @default.
- W2542009849 hasAuthorship W2542009849A5002734812 @default.
- W2542009849 hasAuthorship W2542009849A5030430000 @default.
- W2542009849 hasAuthorship W2542009849A5042301216 @default.
- W2542009849 hasAuthorship W2542009849A5046597133 @default.
- W2542009849 hasAuthorship W2542009849A5066116503 @default.
- W2542009849 hasAuthorship W2542009849A5084694395 @default.
- W2542009849 hasBestOaLocation W25420098491 @default.
- W2542009849 hasConcept C141898687 @default.
- W2542009849 hasConcept C153180895 @default.
- W2542009849 hasConcept C154945302 @default.
- W2542009849 hasConcept C164705383 @default.
- W2542009849 hasConcept C173801870 @default.
- W2542009849 hasConcept C2776820930 @default.
- W2542009849 hasConcept C2778742706 @default.
- W2542009849 hasConcept C34736171 @default.
- W2542009849 hasConcept C41008148 @default.
- W2542009849 hasConcept C71924100 @default.
- W2542009849 hasConcept C89600930 @default.
- W2542009849 hasConceptScore W2542009849C141898687 @default.
- W2542009849 hasConceptScore W2542009849C153180895 @default.
- W2542009849 hasConceptScore W2542009849C154945302 @default.
- W2542009849 hasConceptScore W2542009849C164705383 @default.
- W2542009849 hasConceptScore W2542009849C173801870 @default.
- W2542009849 hasConceptScore W2542009849C2776820930 @default.
- W2542009849 hasConceptScore W2542009849C2778742706 @default.
- W2542009849 hasConceptScore W2542009849C34736171 @default.
- W2542009849 hasConceptScore W2542009849C41008148 @default.
- W2542009849 hasConceptScore W2542009849C71924100 @default.
- W2542009849 hasConceptScore W2542009849C89600930 @default.
- W2542009849 hasFunder F4320321001 @default.
- W2542009849 hasLocation W25420098491 @default.
- W2542009849 hasLocation W25420098492 @default.
- W2542009849 hasLocation W25420098493 @default.
- W2542009849 hasLocation W25420098494 @default.
- W2542009849 hasLocation W25420098495 @default.
- W2542009849 hasOpenAccess W2542009849 @default.
- W2542009849 hasPrimaryLocation W25420098491 @default.
- W2542009849 hasRelatedWork W1502614025 @default.
- W2542009849 hasRelatedWork W1582206143 @default.
- W2542009849 hasRelatedWork W2066259560 @default.
- W2542009849 hasRelatedWork W2118535142 @default.
- W2542009849 hasRelatedWork W2262783296 @default.
- W2542009849 hasRelatedWork W2322974909 @default.
- W2542009849 hasRelatedWork W2380927352 @default.
- W2542009849 hasRelatedWork W2391959412 @default.
- W2542009849 hasRelatedWork W2769435486 @default.
- W2542009849 hasRelatedWork W3006377637 @default.
- W2542009849 hasVolume "2016" @default.
- W2542009849 isParatext "false" @default.
- W2542009849 isRetracted "false" @default.
- W2542009849 magId "2542009849" @default.
- W2542009849 workType "article" @default.