Matches in SemOpenAlex for { <https://semopenalex.org/work/W2542150851> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2542150851 endingPage "114" @default.
- W2542150851 startingPage "114" @default.
- W2542150851 abstract "In recent years many remote sensing instruments of various properties have been employed in an attempt to better characterize important geophysical phenomena. Satellite instruments provide an exceptional opportunity for global long-term observations of the land, the biosphere, the atmosphere, and the oceans. The collected data are used for estimation and better understanding of geophysical parameters such as land cover type, atmospheric properties, or ocean temperature. Achieving accurate estimations of such parameters is an important requirement for development of models able to predict global climate changes. One of the most challenging climate research problems is estimation of global composition, load, and variability of aerosols, small airborne particles that reflect and absorb incoming solar radiation. The existing algorithm for aerosol prediction from satellite observations is deterministic and manually tuned by domain scientist. In contrast to domain-driven method, we show that aerosol prediction is achievable by completely data-driven approaches. These statistical methods consist of learning of nonlinear regression models to predict aerosol load using the satellite observations as inputs. Measurements from unevenly distributed ground-based sites over the world are used as proxy to ground-truth outputs. Although statistical methods achieve better accuracy than deterministic method this setup is appropriate when data are independently and identically distributed (IID). The IID assumption is often violated in remote sensing where data exhibit temporal, spatial, or spatio-temporal dependencies. In such cases, the traditional supervised learning approaches could result in a model with degraded accuracy. Conditional random fields (CRF) are widely used for predicting output variables that have some internal structure. Most of the CRF research has been done on structured classification where the outputs are discrete. We propose a CRF model for continuous outputs that uses multiple unstructured predictors to form its features and at the same time exploits structure among outputs. By constraining the feature functions to quadratic functions of outputs, we show that the CRF model can be conveniently represented in a Gaussian canonical form. The appeal of proposed Gaussian Conditional Random Fields (GCRF) model is in its conceptual simplicity and computational efficiency of learning and inference through use of sparse matrix computations. Experimental results provide strong evidence that the GCRF achieves better accuracy than non-structured models. We improve the representational power of the GCRF model by (1) introducing the adaptive feature function that can learn nonlinear relationships between inputs and outputs and (2) allowing the weights of feature functions to be dependent on inputs. The GCRF is also readily applicable to other regression applications where there is a need for knowledge integration, data fusion, and exploitation of correlation among output variables." @default.
- W2542150851 created "2016-11-04" @default.
- W2542150851 creator A5044038055 @default.
- W2542150851 creator A5085497926 @default.
- W2542150851 date "2011-01-01" @default.
- W2542150851 modified "2023-09-27" @default.
- W2542150851 title "Gaussian conditional random fields for regression in remote sensing" @default.
- W2542150851 hasPublicationYear "2011" @default.
- W2542150851 type Work @default.
- W2542150851 sameAs 2542150851 @default.
- W2542150851 citedByCount "2" @default.
- W2542150851 countsByYear W25421508512016 @default.
- W2542150851 countsByYear W25421508512017 @default.
- W2542150851 crossrefType "journal-article" @default.
- W2542150851 hasAuthorship W2542150851A5044038055 @default.
- W2542150851 hasAuthorship W2542150851A5085497926 @default.
- W2542150851 hasConcept C119857082 @default.
- W2542150851 hasConcept C124101348 @default.
- W2542150851 hasConcept C127413603 @default.
- W2542150851 hasConcept C146849305 @default.
- W2542150851 hasConcept C146978453 @default.
- W2542150851 hasConcept C153294291 @default.
- W2542150851 hasConcept C19269812 @default.
- W2542150851 hasConcept C205649164 @default.
- W2542150851 hasConcept C2779345167 @default.
- W2542150851 hasConcept C39432304 @default.
- W2542150851 hasConcept C41008148 @default.
- W2542150851 hasConcept C62649853 @default.
- W2542150851 hasConceptScore W2542150851C119857082 @default.
- W2542150851 hasConceptScore W2542150851C124101348 @default.
- W2542150851 hasConceptScore W2542150851C127413603 @default.
- W2542150851 hasConceptScore W2542150851C146849305 @default.
- W2542150851 hasConceptScore W2542150851C146978453 @default.
- W2542150851 hasConceptScore W2542150851C153294291 @default.
- W2542150851 hasConceptScore W2542150851C19269812 @default.
- W2542150851 hasConceptScore W2542150851C205649164 @default.
- W2542150851 hasConceptScore W2542150851C2779345167 @default.
- W2542150851 hasConceptScore W2542150851C39432304 @default.
- W2542150851 hasConceptScore W2542150851C41008148 @default.
- W2542150851 hasConceptScore W2542150851C62649853 @default.
- W2542150851 hasLocation W25421508511 @default.
- W2542150851 hasOpenAccess W2542150851 @default.
- W2542150851 hasPrimaryLocation W25421508511 @default.
- W2542150851 hasRelatedWork W1634129993 @default.
- W2542150851 hasRelatedWork W1836081558 @default.
- W2542150851 hasRelatedWork W2615534374 @default.
- W2542150851 hasRelatedWork W2771011869 @default.
- W2542150851 hasRelatedWork W2789266239 @default.
- W2542150851 hasRelatedWork W2890099368 @default.
- W2542150851 hasRelatedWork W2952060454 @default.
- W2542150851 hasRelatedWork W2953972663 @default.
- W2542150851 hasRelatedWork W2971216559 @default.
- W2542150851 hasRelatedWork W2981845870 @default.
- W2542150851 hasRelatedWork W3004605230 @default.
- W2542150851 hasRelatedWork W3038285048 @default.
- W2542150851 hasRelatedWork W3080878715 @default.
- W2542150851 hasRelatedWork W3094493083 @default.
- W2542150851 hasRelatedWork W3105683880 @default.
- W2542150851 hasRelatedWork W3122231250 @default.
- W2542150851 hasRelatedWork W3125341787 @default.
- W2542150851 hasRelatedWork W3203741250 @default.
- W2542150851 hasRelatedWork W816765127 @default.
- W2542150851 hasRelatedWork W81135114 @default.
- W2542150851 isParatext "false" @default.
- W2542150851 isRetracted "false" @default.
- W2542150851 magId "2542150851" @default.
- W2542150851 workType "article" @default.