Matches in SemOpenAlex for { <https://semopenalex.org/work/W2542237291> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2542237291 abstract "Extracting information about the structure of biological tissue from static image data is a complex task which requires a series of computationally intensive operations. Here we present how the power of multi-core CPUs and massively parallel GPUs have been utilised to extract information about the shape, size and path followed by the mammalian oviduct, called the fallopian tube in humans, from histology images, to create a realistic 3D virtual organ for use in predictive computational models. Histology images from a mouse oviduct were processed, using a combination of GPU and multi-core CPU techniques, to identify the individual cross-sections and determine the 3D path that the tube follows through the tissue. This information was then related back to the histology images, linking the 2D cross-sections with their corresponding 3D position along the oviduct. Measurements were then taken from the images and used to computationally generate a series of linear 2D spline cross-sections for the length of the oviduct, which were bound to the 3D path of the tube using a novel particle system based technique that provides smooth resolution of self intersections and crossovers from adjacent sections. This results in a unique 3D model of the oviduct, which is based on measurements of histology slides and therefore grounded in reality. The GPU is used for the processor intensive operations of image processing and particle physics based simulations, significantly reducing the time required to generate a complete model. A set of models created using this technique is being used to investigate the influence that the 3D structure of the oviductal environment has on sperm transport and navigation." @default.
- W2542237291 created "2016-11-04" @default.
- W2542237291 creator A5010656501 @default.
- W2542237291 creator A5045485251 @default.
- W2542237291 creator A5083430240 @default.
- W2542237291 creator A5084150056 @default.
- W2542237291 date "2010-09-01" @default.
- W2542237291 modified "2023-09-23" @default.
- W2542237291 title "Using the GPU and Multi-core CPU to Generate a 3D Oviduct through Feature Extraction from Histology Slides" @default.
- W2542237291 cites W1527351057 @default.
- W2542237291 cites W1762731526 @default.
- W2542237291 cites W1948434737 @default.
- W2542237291 cites W1978760292 @default.
- W2542237291 cites W1980414279 @default.
- W2542237291 cites W1983678353 @default.
- W2542237291 cites W2030503807 @default.
- W2542237291 cites W2035268159 @default.
- W2542237291 cites W2073991948 @default.
- W2542237291 cites W2077254806 @default.
- W2542237291 cites W2107998312 @default.
- W2542237291 cites W2114032261 @default.
- W2542237291 cites W2144887288 @default.
- W2542237291 cites W2162564670 @default.
- W2542237291 cites W2476920427 @default.
- W2542237291 cites W2552348615 @default.
- W2542237291 doi "https://doi.org/10.1109/pdmc-hibi.2010.19" @default.
- W2542237291 hasPublicationYear "2010" @default.
- W2542237291 type Work @default.
- W2542237291 sameAs 2542237291 @default.
- W2542237291 citedByCount "0" @default.
- W2542237291 crossrefType "proceedings-article" @default.
- W2542237291 hasAuthorship W2542237291A5010656501 @default.
- W2542237291 hasAuthorship W2542237291A5045485251 @default.
- W2542237291 hasAuthorship W2542237291A5083430240 @default.
- W2542237291 hasAuthorship W2542237291A5084150056 @default.
- W2542237291 hasConcept C134018914 @default.
- W2542237291 hasConcept C154945302 @default.
- W2542237291 hasConcept C173608175 @default.
- W2542237291 hasConcept C2777129507 @default.
- W2542237291 hasConcept C31972630 @default.
- W2542237291 hasConcept C41008148 @default.
- W2542237291 hasConcept C459310 @default.
- W2542237291 hasConcept C52622490 @default.
- W2542237291 hasConcept C86803240 @default.
- W2542237291 hasConceptScore W2542237291C134018914 @default.
- W2542237291 hasConceptScore W2542237291C154945302 @default.
- W2542237291 hasConceptScore W2542237291C173608175 @default.
- W2542237291 hasConceptScore W2542237291C2777129507 @default.
- W2542237291 hasConceptScore W2542237291C31972630 @default.
- W2542237291 hasConceptScore W2542237291C41008148 @default.
- W2542237291 hasConceptScore W2542237291C459310 @default.
- W2542237291 hasConceptScore W2542237291C52622490 @default.
- W2542237291 hasConceptScore W2542237291C86803240 @default.
- W2542237291 hasLocation W25422372911 @default.
- W2542237291 hasOpenAccess W2542237291 @default.
- W2542237291 hasPrimaryLocation W25422372911 @default.
- W2542237291 hasRelatedWork W1888116733 @default.
- W2542237291 hasRelatedWork W2013784289 @default.
- W2542237291 hasRelatedWork W2015071192 @default.
- W2542237291 hasRelatedWork W2016992331 @default.
- W2542237291 hasRelatedWork W2110484987 @default.
- W2542237291 hasRelatedWork W2756976920 @default.
- W2542237291 hasRelatedWork W2899025061 @default.
- W2542237291 hasRelatedWork W3164119692 @default.
- W2542237291 hasRelatedWork W3173743749 @default.
- W2542237291 hasRelatedWork W1507391647 @default.
- W2542237291 hasRelatedWork W2811590761 @default.
- W2542237291 hasRelatedWork W2815748534 @default.
- W2542237291 hasRelatedWork W2827385322 @default.
- W2542237291 hasRelatedWork W2833739097 @default.
- W2542237291 hasRelatedWork W2838784776 @default.
- W2542237291 hasRelatedWork W2848820763 @default.
- W2542237291 hasRelatedWork W2849176030 @default.
- W2542237291 hasRelatedWork W2854428764 @default.
- W2542237291 hasRelatedWork W2869625345 @default.
- W2542237291 hasRelatedWork W2882037990 @default.
- W2542237291 isParatext "false" @default.
- W2542237291 isRetracted "false" @default.
- W2542237291 magId "2542237291" @default.
- W2542237291 workType "article" @default.